Centennial Trend and Decadal-to-Interdecadal Variability of Atmospheric Angular Momentum in CMIP3 and CMIP5 Simulations

Houk Paek School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona

Search for other papers by Houk Paek in
Current site
Google Scholar
PubMed
Close
and
Huei-Ping Huang School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona

Search for other papers by Huei-Ping Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The climatology and trend of atmospheric angular momentum from the phase 3 and the phase 5 Climate Model Intercomparison Project (CMIP3 and CMIP5, respectively) simulations are diagnosed and validated with the Twentieth Century Reanalysis (20CR). It is found that CMIP5 models produced a significantly smaller bias in the twentieth-century climatology of the relative MR and omega MΩ angular momentum compared to CMIP3. The CMIP5 models also produced a narrower ensemble spread of the climatology and trend of MR and MΩ. Both CMIP3 and CMIP5 simulations consistently produced a positive trend in MR and MΩ for the twentieth and twenty-first centuries. The trend for the twenty-first century is much greater, reflecting the role of greenhouse gas (GHG) forcing in inducing the trend. The simulated increase in MR for the twentieth century is consistent with reanalysis. Both CMIP3 and CMIP5 models produced a wide range of magnitudes of decadal and interdecadal variability of MR compared to 20CR. The ratio of the simulated standard deviation of decadal or interdecadal variability to its observed counterpart ranges from 0.5 to over 2.0 for individual models. Nevertheless, the bias is largely random and ensemble averaging brings the ratio to within 18% of the reanalysis for decadal and interdecadal variability for both CMIP3 and CMIP5. The twenty-first-century simulations from both CMIP3 and CMIP5 produced only a small trend in the amplitude of decadal or interdecadal variability, which is not statistically significant. Thus, while GHG forcing induces a significant increase in the climatological mean of angular momentum, it does not significantly affect its decadal-to-interdecadal variability in the twenty-first century.

Corresponding author address: Houk Paek, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287-6106. E-mail: hpaek@asu.edu

Abstract

The climatology and trend of atmospheric angular momentum from the phase 3 and the phase 5 Climate Model Intercomparison Project (CMIP3 and CMIP5, respectively) simulations are diagnosed and validated with the Twentieth Century Reanalysis (20CR). It is found that CMIP5 models produced a significantly smaller bias in the twentieth-century climatology of the relative MR and omega MΩ angular momentum compared to CMIP3. The CMIP5 models also produced a narrower ensemble spread of the climatology and trend of MR and MΩ. Both CMIP3 and CMIP5 simulations consistently produced a positive trend in MR and MΩ for the twentieth and twenty-first centuries. The trend for the twenty-first century is much greater, reflecting the role of greenhouse gas (GHG) forcing in inducing the trend. The simulated increase in MR for the twentieth century is consistent with reanalysis. Both CMIP3 and CMIP5 models produced a wide range of magnitudes of decadal and interdecadal variability of MR compared to 20CR. The ratio of the simulated standard deviation of decadal or interdecadal variability to its observed counterpart ranges from 0.5 to over 2.0 for individual models. Nevertheless, the bias is largely random and ensemble averaging brings the ratio to within 18% of the reanalysis for decadal and interdecadal variability for both CMIP3 and CMIP5. The twenty-first-century simulations from both CMIP3 and CMIP5 produced only a small trend in the amplitude of decadal or interdecadal variability, which is not statistically significant. Thus, while GHG forcing induces a significant increase in the climatological mean of angular momentum, it does not significantly affect its decadal-to-interdecadal variability in the twenty-first century.

Corresponding author address: Houk Paek, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287-6106. E-mail: hpaek@asu.edu
Save
  • Abarca del Rio, R., 1999: The influence of global warming in earth rotation rate. Ann. Geophys., 17, 806811.

  • Black, R. X., D. Salstein, and R. Rosen, 1996: Interannual modes of variability in atmospheric angular momentum. J. Climate, 9, 28342849.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, and T. Cowan, 2009: Rainfall teleconnections with Indo-Pacific variability in the WCRP CMIP3 models. J. Climate, 22, 50465071.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175190.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • de Viron, O., V. Dehant, H. Goosse, and M. Crucifix, 2002: Effect of global warming on the length-of-day. Geophys. Res. Lett., 29, doi:10.1029/2001GL013672.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., and P. D. Sardeshmukh, 2000: Another look at the annual and semiannual cycles of atmospheric angular momentum. J. Climate, 13, 32213238.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., K. M. Weickmann, and C. J. Hsu, 2001: Trend in atmospheric angular momentum in a transient climate change simulation with greenhouse gas and aerosol forcing. J. Climate, 14, 15251534.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., K. M. Weickmann, and R. D. Rosen, 2003: Unusual behavior in atmospheric angular momentum during 1965 and 1972 El Niño. J. Climate, 16, 25262539.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., R. Seager, and Y. Kushnir, 2005: The 1976/77 transition in precipitation over the Americas and the influence of tropical sea surface temperature. Climate Dyn., 24, 721740.

    • Search Google Scholar
    • Export Citation
  • Ihara, C., and Y. Kushnir, 2009: Change of mean midlatitude westerlies in 21st century climate simulations. Geophys. Res. Lett., 36, L13701, doi:10.1029/2009GL037674.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470.

  • Kang, I.-S., and K.-M. Lau, 1994: Principal modes of atmospheric circulation anomalies associated with global angular momentum fluctuations. J. Atmos. Sci., 51, 11941205.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Kushner, P., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2009a: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 14671485.

  • Meehl, G. A., A. Hu, and B. D. Santer, 2009b: The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Climate, 22, 780792.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., D. R. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, 1994: The 1976-77 climate shift of the Pacific Ocean. Oceanography, 7, 2126.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Paek, H., and H.-P. Huang, 2012: A comparison of decadal-to-interdecadal variability and trend in reanalysis datasets using atmospheric angular momentum. J. Climate,25, 4750–4758.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Räisänen, J., 2003: CO2-induced changes in atmospheric angular momentum in CMIP2 experiments. J. Climate, 16, 132143.

  • Sen Gupta, A., L. Muir, J. N. Brown, S. J. Phipps, P. J. Durack, D. Monselesan, and S. E. Wijffels, 2012: Climate drift in the CMIP3 models. J. Climate,25, 4621–4640.

  • Son, S.-W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489.

    • Search Google Scholar
    • Export Citation
  • Taylor, E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1990: Recently observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc., 71, 988993.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. N. Kiladis, and P. D. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54, 14451461.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of the 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 290 83 5
PDF Downloads 102 40 1