• Biasutti, M., , and A. H. Sobel, 2009: Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophys. Res. Lett., 36, L23707, doi:10.1029/2009GL041303.

    • Search Google Scholar
    • Export Citation
  • Breugem, W.-P., , W. Hazeleger, , and R. J. Haarsma, 2007: Mechanism of northern tropical Atlantic variability and response to CO2 doubling. J. Climate, 20, 26912705.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , X. Cao, , B. S. Giese, , and A. M. da Silva, 1996: Decadal and interannual SST variability in the tropical Atlantic Ocean. J. Phys. Oceanogr., 26, 11651175.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , L. Ji, , and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385, 516518.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., , and S.-J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, doi:10.1029/2011GL047629.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , M. Biasutti, , and D. S. Battisti, 2003: Sensitivity of the Atlantic intertropical convergence zone to boundary conditions. Paleoceanography, 18, 1094, doi:10.1029/2003PA000916.

    • Search Google Scholar
    • Export Citation
  • Cook, K., 2008: The mysteries of Sahel droughts. Nat. Geosci., 1, 647648.

  • Czaja, A., 2004: Why is north tropical Atlantic SST variability stronger in boreal spring? J. Climate, 17, 30173025.

  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781.

    • Search Google Scholar
    • Export Citation
  • Ding, H., , N. S. Keenlyside, , and M. Latif, 2011: Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Climate Dyn., 38, 19651972, doi:10.1007/s00382-011-1097-y.

    • Search Google Scholar
    • Export Citation
  • Doi, T., , T. Tozuka, , and T. Yamagata, 2010: The Atlantic meridional mode and its coupled variability with the Guinea Dome. J. Climate, 23, 455475.

    • Search Google Scholar
    • Export Citation
  • Doi, T., , G. A. Vecchi, , A. J. Rosati, , and T. L. Delworth, 2012: Tropical Atlantic biases in the mean state, seasonal cycle, and interannual variations for a coarse- and a high-resolution coupled climate model. J. Climate, 25, 54945511.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688.

  • Enfield, D. B., , and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J. Geophys. Res., 102, 929945.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., , T. L. Delworth, , A. J. Rosati, , S. M. Griffies, , and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2010: Elements of MOM4p1. GFDL Ocean Group Tech. Rep. 6, 444 pp.

  • Griffies, S. M., and Coauthors, 2011: GFDL’s CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544.

    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., , and K. H. Cook, 2009: Development of a coupled regional model and its application to the study of interactions between the West African monsoon and the eastern tropical Atlantic Ocean. J. Climate, 22, 25912604.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , T. L. Delworth, , J. Lu, , K. L. Findell, , and T. R. Knutson, 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102, 17 89117 896.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163.

  • Kossin, J. P., , and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671781.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., , A. Bracco, , J. Y. Yoo, , and F. Molteni, 2008: Atlantic forced component of the Indian monsoon interannual variability. Geophys. Res. Lett., 35, L04706, doi:10.1029/2007GL033037.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., , I.-S. Kang, , R. Farneti, , and L. Feudale, 2011: Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett., 38, L03702, doi:10.1029/2010GL046248.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., , W. A. Robinson, , P. Chang, , and A. W. Robertson, 2006: The physical basis for predicting Atlantic sector seasonal to interannual climate variability. J. Climate, 19, 59495970.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Lu, R., , B. Dong, , and H. Ding, 2006: Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33, L24701, doi:10.1029/2006GL027655.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., , R. Saravanan, , and P. Chang, 2010: Free and forced variability of the tropical Atlantic Ocean: Role of the wind–evaporation–sea surface temperature feedback. J. Climate, 23, 59585977.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., , and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578.

  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Richter, I., , and S. P. Xie, 2008: On the origin of equatorial Atlantic biases in coupled general circulation models. Climate Dyn., 31, 587598.

    • Search Google Scholar
    • Export Citation
  • Shevliakova, E., and Coauthors, 2009: Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Global Biogeochem. Cycles, 23, GB2022, doi:10.1029/2007GB003176.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part IV: Idealized climate response. J. Climate, 19, 723740.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891907.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst., 9, Q04V01, doi:10.1029/2007GC001844.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , K. L. Swanson, , and B. Soden, 2008: Whither hurricane activity? Science, 322, 687688.

  • Vecchi, G. A., , M. Zhao, , G. Villarini, , A. Rosati, , I. Held, , and R. Gudgel, 2011: Hybrid statistical–dynamical predictions of seasonal Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , T. R. Knutson, , and J. A. Smith, 2011: Is the recorded increase in short-duration North Atlantic tropical storms spurious? J. Geophys. Res., 116, D10114, doi:10.1029/2010JD015493.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , and J. A. Smith, 2012: U.S. landfalling and North Atlantic hurricanes: Statistical modeling of their frequencies and ratios. Mon. Wea. Rev., 140, 4465.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , M. Alexander, , and A. Fontaine, 2009: Midlatitude excitation of tropical variability in the Pacific: The role of thermodynamic coupling and seasonality. J. Climate, 22, 518534.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., , A. Rosati, , N.-C. Lau, , and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12, 6470.

  • Xie, S. P., , and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean-Atmosphere Interaction: From Basin to Global Scales, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

  • Xie, S. P., , C. Deser, , G. A. Vecchi, , J. Ma, , H. Teng, , and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 38583868.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 99 99 20
PDF Downloads 9 9 1

Response to CO2 Doubling of the Atlantic Hurricane Main Development Region in a High-Resolution Climate Model

View More View Less
  • 1 Atmospheric and Oceanic Sciences Program, Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 2 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

Response of climate conditions in the Atlantic hurricane main development region (MDR) to doubling of atmospheric CO2 has been explored using the new high-resolution coupled climate model, version 2.5 (CM2.5), developed at the Geophysical Fluid Dynamics Laboratory (GFDL). In the annual mean, the SST in the MDR warms by about 2°C in the CO2 doubling run relative to the control run; the trade winds become weaker in the northern tropical Atlantic and the rainfall increases over the ITCZ and its northern region. The amplitude of the annual cycle of the SST over the MDR is not significantly changed by CO2 doubling. However, the authors find that the interannual variations show significant responses to CO2 doubling; the seasonal maximum peak of the interannual variations of the SST over the MDR is about 25% stronger than in the control run. The enhancement of the interannual variations of the SST in the MDR is caused by changes in effectiveness of the wind–evaporation–SST (WES) positive feedback; WES remains a positive feedback until boreal early summer in the CO2 doubling run. The enhancement of the interannual variability of the SST over the MDR in boreal early summer due to CO2 doubling could lead to serious damages associated with the Atlantic hurricane count and drought (or flood) in the Sahel and South America in a future climate.

Current affiliation: Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan.

Corresponding author address: Takeshi Doi, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, 201 Forrestal Road, Princeton, NJ 08542. E-mail: takeshi.doi@noaa.gov

Abstract

Response of climate conditions in the Atlantic hurricane main development region (MDR) to doubling of atmospheric CO2 has been explored using the new high-resolution coupled climate model, version 2.5 (CM2.5), developed at the Geophysical Fluid Dynamics Laboratory (GFDL). In the annual mean, the SST in the MDR warms by about 2°C in the CO2 doubling run relative to the control run; the trade winds become weaker in the northern tropical Atlantic and the rainfall increases over the ITCZ and its northern region. The amplitude of the annual cycle of the SST over the MDR is not significantly changed by CO2 doubling. However, the authors find that the interannual variations show significant responses to CO2 doubling; the seasonal maximum peak of the interannual variations of the SST over the MDR is about 25% stronger than in the control run. The enhancement of the interannual variations of the SST in the MDR is caused by changes in effectiveness of the wind–evaporation–SST (WES) positive feedback; WES remains a positive feedback until boreal early summer in the CO2 doubling run. The enhancement of the interannual variability of the SST over the MDR in boreal early summer due to CO2 doubling could lead to serious damages associated with the Atlantic hurricane count and drought (or flood) in the Sahel and South America in a future climate.

Current affiliation: Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan.

Corresponding author address: Takeshi Doi, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, 201 Forrestal Road, Princeton, NJ 08542. E-mail: takeshi.doi@noaa.gov
Save