• Achuthavarier, D., , and V. Krishnamurthy, 2011: Role of Indian and Pacific SST in Indian summer monsoon intraseasonal variability. J. Climate, 24, 29152930.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., , M. Kohler, , T. Jung, , F. Doblas-Reyes, , M. Leutbecher, , M. J. Rodwell, , F. Vitart, , and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351.

    • Search Google Scholar
    • Export Citation
  • Belanger, J. I., , P. J. Webster, , J. A. Curry, , and M. T. Jelinek, 2012: Extended predictions of north Indian Ocean tropical cyclones. Wea. Forecasting, 27, 757769.

    • Search Google Scholar
    • Export Citation
  • Cane, M., , S. E. Zebiak, , and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321, 827832.

  • Chen, T.-C., , and J. C. Alpert, 1990: Systematic errors in the annual and intraseasonal variations of the planetary-scale divergent circulation in NMC medium-range forecasts. Mon. Wea. Rev., 118, 26072623.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., , and S.-P. Weng, 1999: Interannual and intraseasonal variations in monsoon depressions and their westward-propagating predecessors. Mon. Wea. Rev., 127, 10051020.

    • Search Google Scholar
    • Export Citation
  • Ding, R., , J. Li, , and K.-H. Seo, 2011: Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations. Mon. Wea. Rev., 139, 24212438.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , and B. Wang, 2009: Critical roles of the stratiform rainfall in sustaining the Madden–Julian oscillation: GCM experiments. J. Climate, 22, 39393959.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , and P. Hsu, 2011: Extended-range ensemble forecasting of tropical cyclogenesis in the northern Indian Ocean: Modulation of Madden–Julian oscillation. Geophys. Res. Lett., 38, L15803, doi:10.1029/2011GL048249.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , B. Wang, , T. Li, , and J. P. McCreary, 2003: Coupling between northward-propagating intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 17331753.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , B. Wang, , D. E. Waliser, , and L. Tao, 2007: Impact of atmosphere–ocean coupling on the predictability of monsoon intraseasonal oscillations. J. Atmos. Sci., 64, 157174.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , B. Yang, , Q. Bao, , and B. Wang, 2008: Sea surface temperature feedback extends the predictability of tropical intraseasonal oscillation. Mon. Wea. Rev., 136, 577597.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , B. Wang, , Q. Bao, , P. Liu, , and J.-Y. Lee, 2009: Impacts of initial conditions on monsoon intraseasonal forecasting. Geophys. Res. Lett., 36, L08801, doi:10.1029/2009GL037166.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , B. Wang, , J.-Y. Lee, , W. Q. Wang, , and L. Gao, 2011: Sensitivity of dynamical intraseasonal prediction skills to different initial conditions. Mon. Wea. Rev., 139, 25722592.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , and P. K. Xavier, 2003: Potential predictability and extended range prediction of Indian summer monsoon breaks. Geophys. Res. Lett., 30, 1966, doi:10.1029/2003GL017810.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , R. S. Ajayamohan, , P. K. Xavier, , and D. Sengupta, 2003: Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett., 30, 1431, doi:10.1029/2002GL016734.

    • Search Google Scholar
    • Export Citation
  • Goulet, L., , and J. P. Duvel, 2000: A new approach to detect and characterize intermittent atmospheric oscillations: Application to the intraseasonal oscillation. J. Atmos. Sci., 57, 23972416.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , B. Liebmann, , M. Newmann, , J. D. Glick, , and J. E. Schemm, 2000: Medium-range forecast errors associated with active episodes of the Madden–Julian oscillation. Mon. Wea. Rev., 128, 6986.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., , and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20, 44024424.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., 2010: Accelerating progress in global atmospheric model development through improved parameterizations: Challenges, opportunities, and strategies. Bull. Amer. Meteor. Soc., 91, 869875.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , D. E. Waliser, , M. C. Wheeler, , C. Jones, , M.-I. Lee, , and S. D. Schubert, 2008: Assessing the skill of an all-season statistical forecast model for the Madden–Julian oscillation. Mon. Wea. Rev., 136, 19401956.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , D. E. Waliser, , J.-K. E. Schemm, , and W. K. M. Lau, 2000: Prediction skill of the Madden and Julian oscillation in dynamical extended range forecasts. Climate Dyn., 16, 273289.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , L. M. V. Carvalho, , R. W. Higgins, , D. E. Waliser, , and J.-K. E. Schemm, 2004: A statistical forecast model of tropical intraseasonal convective anomalies. J. Climate, 17, 20782095.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2012: High-resolution climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 31553172.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., , and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , B. Wang, , and H. Fudeyasu, 2009: Genesis of tropical cyclone Nargis revealed by multiple satellite observations. Geophys. Res. Lett., 36, L06811, doi:10.1029/2009GL037296.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1971: Tropical east–west circulations during the northern summer. J. Atmos. Sci., 28, 13421347.

  • Krishnamurti, T. N., , M. Subramaniam, , G. Daughenbaugh, , D. Oosterhof, , and J. H. Xue, 1992: One-month forecast of wet and dry spells of the monsoon. Mon. Wea. Rev., 120, 11911223.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , C. M. Kishtawal, , T. LaRow, , D. Bachiochi, , Z. Zhang, , C. E. Williford, , S. Gadgil, , and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285, 15481550.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and P. H. Chan, 1986: Intraseasonal and interannual variations of tropical convection: A possible link between 40–50-day oscillation and ENSO? J. Atmos. Sci., 45, 506521.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and F. C. Chang, 1992: Tropical intraseasonal oscillation and its prediction by the NMC operational model. J. Climate, 5, 13651378.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and D. E. Waliser, Eds., 2012: Intraseasonal Variability of the Atmosphere–Ocean Climate System. 2nd ed. Springer, 613 pp.

  • Lee, J.-Y., and Coauthors, 2010: How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Climate Dyn., 35, 267283.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., , B. Wang, , M. Wheeler, , X. Fu, , D. Waliser, , and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, doi:10.1007/s00382-012-1544-4.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , H. H. Hendon, , and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401412.

    • Search Google Scholar
    • Export Citation
  • Liess, S., , D. E. Waliser, , and S. D. Schubert, 2005: Predictability studies of the intraseasonal oscillation with the ECHAM5 AGCM. J. Atmos. Sci., 62, 33203336.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , G. Brunet, , and J. Derome, 2008: Forecast skill of the Madden–Julian oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 41304149.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate model. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 2006: Predictability—A problem partly solved. Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 40–58.

  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., , and H. Endo, 2011: Verification of medium-range MJO forecasts with TIGGE. Geophys. Res. Lett., 38, L11801, doi:10.1029/2011GL047480.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453.

  • Moorthi, S., , H.-L. Pan, , and P. Caplan, 2011: Changes to the 2011 NCEP operational MRF/AVN global analysis/forecast system. NWS Tech. Procedures Bull. 484, 14 pp. [Available online at http://www.nws.noaa.gov/om/tpb/484.htm.]

  • Nakazawa, T., 1986: Intraseasonal variation of OLR in the tropics during the FGGE year. J. Meteor. Soc. Japan, 64, 1734.

  • Pacanowski, R. C., , and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/GFDL, 692 pp.

  • Pegion, K., , and B. P. Kirtman, 2008: The impact of air–sea interactions on the simulation of tropical intraseasonal variability. J. Climate, 21, 66166635.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., , and P. D. Sardeshmukh, 2011: Prospects for improving subseasonal predictions. Mon. Wea. Rev., 139, 36483666.

  • Rashid, H. A., , H. H. Hendon, , M. C. Wheeler, , and O. Alves, 2011: Prediction of the Madden–Julian oscillation with the POAMA dynamical prediction system. Climate Dyn., 36, 649661.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , and J. O. Roads, 2005: Long-range predictability in the tropics. Part II: 30–60-day variability. J. Climate, 18, 634650.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M., and Coauthors, 2009: MERRA—NASA’s Reanalysis: Overview of the System. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Rienecker377.pdf.]

  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max Planck Institute for Meteorology Rep. 218, 90 pp.

  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Seo, K.-H., , and W. Wang, 2010: The Madden–Julian oscillation simulated in the NCEP Climate Forecast System model: The importance of stratiform heating. J. Climate, 23, 47704793.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., , J.-K. E. Schemm, , C. Jones, , and S. Moorthi, 2005: Forecast skill of the tropical intraseasonal oscillation in the NCEP GFS dynamical extended range forecasts. Climate Dyn., 25, 265284.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., , W.-Q. Wang, , J. Gottschalck, , Q. Zhang, , J.-K. E. Schemm, , W. R. Higgins, , and A. Kumar, 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 23722388.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1998: Predictability in the midst of chaos: A scientific basis for climate forecasting. Science, 282, 728731.

  • Shukla, J., , R. Hagedorn, , B. Hoskins, , J. Kinter, , J. Marotzke, , M. Miller, , T. N. Palmer, , and J. Slingo, 2009: Strategies: Revolution in climate prediction: A declaration at the world modeling summit for climate prediction. Bull. Amer. Meteor. Soc., 90, 175178.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., , S. Uppala, , D. Dee, , and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , E. D. Maloney, , G. Bellon, , and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst.,2 (2), doi:10.3894/JAMES.2010.2.2.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., , and S. Saha, 1990: Frequency dependence in forecast skill. Mon. Wea. Rev., 118, 128137.

  • Vitart, F., , and F. Molteni, 2009: Dynamical extended-range prediction of early monsoon rainfall over India. Mon. Wea. Rev., 137, 14801492.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , S. Woolnough, , M. A. Balmaseda, , and A. M. Tompkins, 2007: Monthly forecast of the Madden–Julian oscillation using a coupled GCM. Mon. Wea. Rev., 135, 27002715.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2008: The new VarEPS-monthly forecasting system: A first step towards seamless prediction. Quart. J. Roy. Meteor. Soc., 134, 17891799.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , A. Leroy, , and M. C. Wheeler, 2010: A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 138, 36713682.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , C. Jones, , J. K. E. Schemm, , and N. E. Graham, 1999: A statistical extended-range tropical forecast model based on the slow evolution of the Madden–Julian oscillation. J. Climate, 12, 19181939.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , W. Stern, , S. Schubert, , and K. M. Lau, 2003: Dynamic predictability of intraseasonal variability associated with the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 129, 28972925.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2012: The “year” of tropical convection (May 2008–April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 11891218.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286.

  • Wang, B., , P. Webster, , K. Kikuchi, , T. Yasunari, , and Y. Qi, 2006: Boreal summer quasi-monthly oscillation in the global tropics. Climate Dyn., 27, 661675.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CLiPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117, doi:10.1007/S00382-008-0460-0.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , W. Wang, , X. Fu, , and K.-H. Seo, 2012: Tropical intraseasonal rainfall variability in the CFSR. Climate Dyn., 38, 21912207, doi:10.1007/s00382-011-1087-0.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , M. Chen, , and A. Kumar, 2009: Impacts of ocean surface on the northward propagation of the boreal-summer intraseasonal oscillation in the NCEP climate forecast system. J. Climate, 22, 65616576.

    • Search Google Scholar
    • Export Citation
  • Weaver, S., , W. Q. Wang, , M. Chen, , and A. Kumar, 2011: Representation of MJO variability in the NCEP Climate Forecast System. J. Climate, 24, 46764694.

    • Search Google Scholar
    • Export Citation
  • Wheeler, H., , and K. M. Weickmann, 2001: Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon. Wea. Rev., 129, 26772694.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2005: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier, 627 pp.

  • Wolff, J. O., , E. Maier-Raimer, , and S. Legutke, 1997: The Hamburg ocean primitive equation model. Deutsches Klimarechenzentrum Tech. Rep. 13, 98 pp.

  • Woolnough, S. J., , F. Vitart, , and M. A. Balmaseda, 2007: The role of the ocean in the Madden–Julian oscillation: Implications for the MJO prediction. Quart. J. Roy. Meteor. Soc., 133, 117128.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., , and H. van den Dool, 2012: Relative merit of model improvement versus availability of retrospective forecasts: The case of climate forecast system MJO prediction. Wea. Forecasting, 27, 10451051.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 50 3
PDF Downloads 48 48 4

Intraseasonal Forecasting of the Asian Summer Monsoon in Four Operational and Research Models

View More View Less
  • 1 IPRC, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 2 Climate Prediction Center, National Centers for Environmental Prediction, Camp Spring, Maryland
  • | 3 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

The boreal summer intraseasonal oscillation (BSISO) is a dominant tropical mode with a period of 30–60 days, which offers an opportunity for intraseasonal forecasting of the Asian summer monsoon. The present study provides a preliminary, yet up-to-date, assessment of the prediction skill of the BSISO in four state-of-the-art models: the ECMWF model, the University of Hawaii (UH) model, the NCEP Climate Forecast System, version 2 (CFSv2), and version 1 for the 2008 summer (CFSv1), which is a common year of two international programs: the Year of Tropical Convection (YOTC) and Asian Monsoon Years (AMY). The mean prediction skill over the global tropics and Southeast Asia for first three models reaches about 1–2 (3) weeks for BSISO-related rainfall (850-hPa zonal wind), measured as the lead time when the spatial anomaly correlation coefficient drops to 0.5. The skill of CFSv1 is consistently lower than the other three. The strengths and weaknesses of the CFSv2, UH, and ECMWF models in forecasting the BSISO for this specific year are further revealed. The ECMWF and UH have relatively better performance for northward-propagating BSISO when the initial convection is near the equator, although they suffer from an early false BSISO onset when initial convection is in the off-equatorial monsoon trough. However, CFSv2 does not have a false onset problem when the initial convection is in monsoon trough, but it does have a problem with very slow northward propagation. After combining the forecasts of CFSv2 and UH into an equal-weighted multimodel ensemble, the resultant skill is slightly better than that of individual models. An empirical model shows a comparable skill with the dynamical models. A combined dynamical–empirical ensemble advances the intraseasonal forecast skill of BSISO-related rainfall to three weeks.

School of Ocean and Earth Science and Technology Contribution Number 8898 and International Pacific Research Center Contribution Number 963.

Corresponding author address: Dr. Joshua Xiouhua Fu, IPRC, SOEST, University of Hawaii at Manoa, 1680 East–West Road, POST Bldg. 409D, Honolulu, HI 96822. E-mail: xfu@hawaii.edu

Abstract

The boreal summer intraseasonal oscillation (BSISO) is a dominant tropical mode with a period of 30–60 days, which offers an opportunity for intraseasonal forecasting of the Asian summer monsoon. The present study provides a preliminary, yet up-to-date, assessment of the prediction skill of the BSISO in four state-of-the-art models: the ECMWF model, the University of Hawaii (UH) model, the NCEP Climate Forecast System, version 2 (CFSv2), and version 1 for the 2008 summer (CFSv1), which is a common year of two international programs: the Year of Tropical Convection (YOTC) and Asian Monsoon Years (AMY). The mean prediction skill over the global tropics and Southeast Asia for first three models reaches about 1–2 (3) weeks for BSISO-related rainfall (850-hPa zonal wind), measured as the lead time when the spatial anomaly correlation coefficient drops to 0.5. The skill of CFSv1 is consistently lower than the other three. The strengths and weaknesses of the CFSv2, UH, and ECMWF models in forecasting the BSISO for this specific year are further revealed. The ECMWF and UH have relatively better performance for northward-propagating BSISO when the initial convection is near the equator, although they suffer from an early false BSISO onset when initial convection is in the off-equatorial monsoon trough. However, CFSv2 does not have a false onset problem when the initial convection is in monsoon trough, but it does have a problem with very slow northward propagation. After combining the forecasts of CFSv2 and UH into an equal-weighted multimodel ensemble, the resultant skill is slightly better than that of individual models. An empirical model shows a comparable skill with the dynamical models. A combined dynamical–empirical ensemble advances the intraseasonal forecast skill of BSISO-related rainfall to three weeks.

School of Ocean and Earth Science and Technology Contribution Number 8898 and International Pacific Research Center Contribution Number 963.

Corresponding author address: Dr. Joshua Xiouhua Fu, IPRC, SOEST, University of Hawaii at Manoa, 1680 East–West Road, POST Bldg. 409D, Honolulu, HI 96822. E-mail: xfu@hawaii.edu
Save