• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Arpe, K., , C. Brankovic, , E. Oriol, , and P. Speth, 1986: Variability in time and space of energetics from a long series of atmospheric data produced by ECMWF. Beitr. Phys. Atmos., 59, 321355.

    • Search Google Scholar
    • Export Citation
  • Baldi, M., , G. A. Dalu, , and R. A. Pielke, 2008: Vertical velocities and available potential energy generated by landscape variability—Theory. J. Appl. Meteor. Climatol., 47, 397410.

    • Search Google Scholar
    • Export Citation
  • Boer, G., , and S. Lambert, 2008: The energy cycle in atmospheric models. Climate Dyn., 30, 371390, doi:10.1007/s00382-007-0303-4.

  • Bolvin, D. T., , R. F. Adler, , G. J. Huffman, , E. J. Nelkin, , and J. P. Poutiainen, 2009: Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations. J. Appl. Meteor. Climatol., 48, 18431857.

    • Search Google Scholar
    • Export Citation
  • Brown, J. A., 1964: A diagnostic study of tropospheric diabatic heating and the generation of available potential energy. Tellus, 16, 371388.

    • Search Google Scholar
    • Export Citation
  • Chen, T., , W. B. Rossow, , and Y.-C. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286.

  • Chou, S.-H., , E. Nelkin, , J. Ardizzone, , R. M. Atlas, , and C.-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16, 32563273.

    • Search Google Scholar
    • Export Citation
  • Clapp, P. F., 1961: Normal heat sources and sinks in the lower troposphere in winter. Mon. Wea. Rev., 89, 147162.

  • Curry, J. A., , C. A. Clayson, , W. B. Rossow, , R. Reeder, , Y. C. Zhang, , P. J. Webster, , G. Liu, , and R. S. Sheu, 1999: High-resolution satellite-derived dataset of the surface fluxes of heat, freshwater, and momentum for the TOGA COARE IOP. Bull. Amer. Meteor. Soc., 80, 20592080.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85, 409424.

  • Curtis, S., , R. Adler, , G. Huffman, , E. Nelkin, , and D. Bolvin, 2001: Evolution of tropical and extratropical precipitation anomalies during the 1997–1998 ENSO cycle. Int. J. Climatol., 21, 961971.

    • Search Google Scholar
    • Export Citation
  • Dutton, J. A., , and D. R. Johnson, 1967: The theory of available potential energy and a variational approach to atmospheric energetics. Advances in Geophysics, Vol. 12, Academic Press, 333–436.

  • Fuelberg, H. E., , M. G. Ruminski, , and D. O’C. Starr, 1985: Mesoscale generation of available potential energy in the warm sector of an extratropical cyclone. Mon. Wea. Rev., 113, 11501165.

    • Search Google Scholar
    • Export Citation
  • Haimberger, L., , and M. Hantel, 2000: Implementing convection into Lorenz’s global cycle. Part II. A new estimate of the conversion rate into kinetic energy. Tellus, 52, 7592.

    • Search Google Scholar
    • Export Citation
  • Hansen, A. R., , and R. L. Nagle, 1984: Estimates of the generation of available potential energy by infrared radiation. Mon. Wea. Rev., 112, 13701377.

    • Search Google Scholar
    • Export Citation
  • Hantel, M., , and L. Haimberger, 2000: Implementing convection into Lorenz’s global cycle. Part I. Gridscale averaging of the energy equations. Tellus, 52, 6674.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., , and D. G. Golder, 1981: The effects of condensational heating on midlatitude transient waves in their mature stage: Control experiments with a GFDL general circulation model. J. Atmos. Sci., 38, 25322539.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , M. M. Morrissey, , D. T. Bolvin, , S. Curtis, , R. Joyce, , B. McGavock, , and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kidwell, K. B., 1995: NOAA polar orbiter data user’s guide. NOAA/NESDIS Guide, 394 pp.

  • Li, L., , A. P. Ingersoll, , X. Jiang, , D. Feldman, , and Y. L. Yung, 2007: Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys. Res. Lett., 34, L16813, doi:10.1029/2007GL029985.

    • Search Google Scholar
    • Export Citation
  • Lin, B., , and W. B. Rossow, 1997: Precipitation water path and rainfall rate estimates over oceans using special sensor microwave imager and International Satellite Cloud Climatology Project data. J. Geophys. Res., 102, 93599374.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., , Y. F. Fu, , R. C. Yu, , L. Sun, , and N. M. Lu, 2008: A new satellite-based census of precipitating and nonprecipitating clouds over the tropics and subtropics. Geophys. Res. Lett., 35, L07816, doi:10.1029/2008GL033208.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167.

  • Lorenz, E. N., 1967: The nature and theory of the general circulation of the atmosphere. WMO-218 TP 115, 161 pp.

  • Magagi, R., , and A. P. Barros, 2004: Estimation of latent heating of rainfall during the onset of the Indian monsoon using TRMM PR and radiosonde data. J. Appl. Meteor., 43, 328349.

    • Search Google Scholar
    • Export Citation
  • Marques, C. A. F., , A. Rocha, , J. Corte-Real, , J. M. Castanheira, , J. Ferreira, , and P. Melo-Gonçalves, 2009: Global atmospheric energetics from NCEP–Reanalysis 2 and ECMWF–ERA40 Reanalysis. Int. J. Climatol., 29, 159174.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., , J. H. Mather, , and T. P. Ackerman, 2007: Analysis of tropical radiative heating profiles: A comparison of models and observations. J. Geophys. Res., 112, D14218, doi:10.1029/2006JD008290.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., , and J. P. Peixoto, 1976: On the variability of the atmospheric energy cycle within a 5-year period. J. Geophys. Res., 81, 36433659.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., , and J. P. Peixoto, 1983: Global angular momentum and energy balance requirements from observations. Advances in Geophysics, Vol. 25, Academic Press, 355490.

    • Search Google Scholar
    • Export Citation
  • Pauley, P. M., , and P. J. Smith, 1988: Direct and indirect effects of latent heat release on a synoptic-scale wave system. Mon. Wea. Rev., 116, 12091235.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and A. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Raymond, D. J., 2000: The Hadley circulation as a radiative–convective instability. J. Atmos. Sci., 57, 12861297.

  • Robertson, F. R., , and P. J. Smith, 1983: The impact of model moist processes on the energetics of extratropical cyclones. Mon. Wea. Rev., 111, 723744.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381–394.

  • Romanou, A., , W. B. Rossow, , and S.-H. Chou, 2006: Decorrelation scales of high-resolution turbulent fluxes at the ocean surface and a method to fill in gaps in satellite data products. J. Climate, 19, 33783393.

    • Search Google Scholar
    • Export Citation
  • Romanski, J., 2009: Investigating the role of diabatic heating in global atmospheric circulation and climate sensitivity: An energetics approach. Ph.D. thesis, Columbia University, 242 pp.

  • Rossow, W. B., , and Y.-C. Zhang, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP datasets: II. Validation and first results. J. Geophys. Res., 100 (D1), 11671197.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , A. W. Walker, , D. E. Beuschel, , and M. D. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets. World Meteorological Organization Rep. WMO/TD 737, 115 pp.

  • Rossow, W. B., , Y.-C. Zhang, , and J. Wang, 2005: A statistical model of cloud vertical structure based on reconciling cloud layer amounts inferred from satellites and radiosonde humidity profiles. J. Climate, 18, 35873605.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., , and P. R. Houser, 2007: Assessing a satellite-era perspective of the global water cycle. J. Climate, 20, 13161338.

  • Sheu, R.-S., , and J. A. Curry, 1992: Interactions between North Atlantic clouds and the large-scale environment. Mon. Wea. Rev., 120, 261278.

    • Search Google Scholar
    • Export Citation
  • Siegmund, P., 1993: Cloud diabatic forcing of the atmosphere, estimated from simultaneous ECMWF diabatic heating and ISCCP cloud amount observations. J. Climate, 6, 24192433.

    • Search Google Scholar
    • Export Citation
  • Siegmund, P., 1994: The generation of available potential energy: A comparison of results from a general circulation model with observations. Climate Dyn., 11, 129140.

    • Search Google Scholar
    • Export Citation
  • Smith, P. J., 1980: The energetics of extratropical cyclones. Rev. Geophys., 18, 378386.

  • Sohn, B.-J., 1999: Cloud-induced infrared radiative heating and its implications for large-scale tropical circulations. J. Atmos. Sci., 56, 26572672.

    • Search Google Scholar
    • Export Citation
  • Sohn, B.-J., , and E. A. Smith, 1992a: The significance of cloud–radiative forcing to the general circulation on climate time scales—A satellite interpretation. J. Atmos. Sci., 49, 845860.

    • Search Google Scholar
    • Export Citation
  • Sohn, B.-J., , and E. A. Smith, 1992b: Global energy transports and the influence of clouds on transport requirements—A satellite analysis. J. Climate, 5, 717734.

    • Search Google Scholar
    • Export Citation
  • Steinheimer, M., , M. Hantel, , and P. Bechtold, 2008: Convection in Lorenz’s global energy cycle with the ECMWF model. Tellus, 60, 10011022.

    • Search Google Scholar
    • Export Citation
  • Stramler, K., , A. D. Del Genio, , and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 17471762.

  • Stuhlmann, R., , and G. L. Smith, 1988a: A study of cloud-generated radiative heating and its generation of available potential energy. Part I: Theoretical background. J. Atmos. Sci., 45, 39113927.

    • Search Google Scholar
    • Export Citation
  • Stuhlmann, R., , and G. L. Smith, 1988b: A study of cloud-generated radiative heating and its generation of available potential energy. Part II: Results for a climatological zonal mean January. J. Atmos. Sci., 45, 39283943.

    • Search Google Scholar
    • Export Citation
  • Suomi, V. E., , and W. C. Shen, 1963: Horizontal variation of infrared cooling and the generation of eddy available potential energy. J. Atmos. Sci., 20, 6265.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2001: Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1988. J. Appl. Meteor., 40, 957982.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87, 15551572.

  • Trenberth, K. E., , and L. Smith, 2006: The vertical structure of temperature in the tropics: Different flavors of El Niño. J. Climate, 19, 49564970.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. M. Caron, , and D. P. Stepaniak, 2001: The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Climate Dyn., 17, 259276.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , D. P. Stepaniak, , and J. M. Caron, 2002: Accuracy of atmospheric energy budgets from analyses. J. Climate, 15, 33433360.

    • Search Google Scholar
    • Export Citation
  • Turpeinen, O. M., , L. Garand, , R. Benoit, , and M. Roch, 1990: Diabatic initialization of the Canadian Regional Finite-Element (RFE) model using satellite data. Part I: Methodology and application to a winter storm. Mon. Wea. Rev., 118, 13811395.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., , W. B. Rossow, , A. A. Lacis, , V. Oinas, , and M. I. Mischenko, 2004: Calculation of radiative flux profiles from the surface to top of atmosphere based on ISCPP and other global datasets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., , W. B. Rossow, , and P. W. Stackhouse Jr., 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near-surface atmosphere. J. Geophys. Res., 111, D13106, doi:10.1029/2005JD006873.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 3
PDF Downloads 21 21 1

Contributions of Individual Atmospheric Diabatic Heating Processes to the Generation of Available Potential Energy

View More View Less
  • 1 Center for Climate Systems Research, Columbia University, New York, New York
  • | 2 City College of New York, City University of New York, New York, New York
© Get Permissions
Restricted access

Abstract

The generation of zonal and eddy available potential energy (Gz and Ge) as formulated by Lorenz are computed on a global-, daily-, and synoptic-scale basis to consider the contribution of each diabatic heating component separately and in combination. Using global, mostly satellite-derived datasets for the diabatic heating components and the temperature enables us to obtain Gz and, especially, Ge from observations for the first time and at higher temporal and spatial resolution than previously possible. The role of clouds in maintaining G is investigated.

The global annual mean Gz is 1.52 W m−2. Values reach a minimum of 0.63 W m−2 in the Northern Hemisphere during spring and a maximum of 2.27 W m−2 in the Southern Hemisphere during winter. The largest contributors to Gz are latent heating in the tropical upper troposphere, associated with the intertropical convergence zone in the summer hemisphere and surface sensible heat fluxes in the winter pole. Diabatic cooling by radiative fluxes (mostly longwave) generally destroys Gz.

The value of Ge is negative and is about an order of magnitude smaller than Gz, with a global annual mean of −0.29 W m−2. However, the small value of Ge results from the cancellation of the contributions from the individual diabatic heating terms, which are actually roughly similar in magnitude to their Gz contributions.

The results presented herein suggest that the large-scale dynamics of the atmosphere organize the spatial and temporal distribution of clouds and precipitation in such a way as to increase the energy available to drive the circulation, a kind of positive feedback.

Corresponding author address: Joy Romanski, Center for Climate Systems Research, Columbia University, 2880 Broadway, New York, NY 10025. E-mail: jr988@columbia.edu

Abstract

The generation of zonal and eddy available potential energy (Gz and Ge) as formulated by Lorenz are computed on a global-, daily-, and synoptic-scale basis to consider the contribution of each diabatic heating component separately and in combination. Using global, mostly satellite-derived datasets for the diabatic heating components and the temperature enables us to obtain Gz and, especially, Ge from observations for the first time and at higher temporal and spatial resolution than previously possible. The role of clouds in maintaining G is investigated.

The global annual mean Gz is 1.52 W m−2. Values reach a minimum of 0.63 W m−2 in the Northern Hemisphere during spring and a maximum of 2.27 W m−2 in the Southern Hemisphere during winter. The largest contributors to Gz are latent heating in the tropical upper troposphere, associated with the intertropical convergence zone in the summer hemisphere and surface sensible heat fluxes in the winter pole. Diabatic cooling by radiative fluxes (mostly longwave) generally destroys Gz.

The value of Ge is negative and is about an order of magnitude smaller than Gz, with a global annual mean of −0.29 W m−2. However, the small value of Ge results from the cancellation of the contributions from the individual diabatic heating terms, which are actually roughly similar in magnitude to their Gz contributions.

The results presented herein suggest that the large-scale dynamics of the atmosphere organize the spatial and temporal distribution of clouds and precipitation in such a way as to increase the energy available to drive the circulation, a kind of positive feedback.

Corresponding author address: Joy Romanski, Center for Climate Systems Research, Columbia University, 2880 Broadway, New York, NY 10025. E-mail: jr988@columbia.edu
Save