• Anderson, D., , K. I. Hodges, , and B. J. Hoskins, 2003: Sensitivity of feature-based analysis methods of storm tracks to the form of background field removal. Mon. Wea. Rev., 131, 565573.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543.

  • Bengtsson, L., , K. I. Hodges, , and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., , and D. B. Stephenson, 2012: Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Climate Dyn., 39, 28052821, doi:10.1007/s00382-012-1330-3.

    • Search Google Scholar
    • Export Citation
  • Buser, C. M., , H. R. Künsch, , D. Lüthi, , M. Wild, , and C. Schär, 2009: Bayesian multi-model projection of climate: Bias assumptions and interannual variability. Climate Dyn., 33, 849868, doi:10.1007/s00382-009-0588-6.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., , L. C. Shaffrey, , and K. I. Hodges, 2011: Northern Hemisphere extratropical cyclones in a warming climate in the HiGEM high-resolution climate model. J. Climate, 24, 53365352.

    • Search Google Scholar
    • Export Citation
  • Chandler, R. E., 2013: Exploiting strength, discounting weakness: Combining information from multiple climate simulators. Philos. Trans. Roy. Soc. London, A371, 14712962 , doi:10.1098/rsta.2012.0388.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., , F. Boberg, , O. B. Christensen, , and P. Lucas-Picher, 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709, doi:10.1029/2008GL035694.

    • Search Google Scholar
    • Export Citation
  • Collins, M., , R. E. Chandler, , P. M. Cox, , J. M. Huthnance, , J. Rougier, , and D. B. Stephenson, 2012: Quantifying future climate change. Nat. Climate Change, 2, 403409, doi:10.1038/nclimate1414.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., 2007: A Bayesian framework for multimodel regression. J. Climate, 20, 28102826.

  • Deser, C., , A. Philllips, , V. Bourdette, , and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Ferro, C. A. T., 2004: Attributing variation in a regional climate change modelling experiment. EU Project PRUDENCE Tech. Rep., 21 pp. [Available online at http://prudence.dmi.dk/public/publications/analysis_of_variance.pdf.]

  • Giorgi, F., , and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Averaging” (REA) method. J. Climate, 15, 11411158.

    • Search Google Scholar
    • Export Citation
  • Hingray, B., , A. Mezghani, , and T. A. Buishand, 2007: Development of probability distributions for regional climate change from uncertain global mean warming and an uncertain scaling relationship. Hydrol. Earth Syst. Sci., 11, 10971114, doi:10.5194/hess-11-1097-2007.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732585.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465.

  • Hodges, K. I., 1996: Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon. Wea. Rev., 124, 29142932.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373.

  • Hodges, K. I., , R. W. Lee, , and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061.

    • Search Google Scholar
    • Export Citation
  • Kang, E. L., , and N. Cressie, 2013: Bayesian hierarchical ANOVA of regional climate-change projections from NARCCAP Phase II. Int. J. Appl. Earth Obs., 22, 315 , doi:10.1016/j.jag.2011.12.007.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., , and F. W. Zwiers, 2002: Climate predictions with multimodel ensembles. J. Climate, 15, 793799.

  • Knutti, R., , G. Abramowitz, , M. Collins, , V. Eyring, , P. J. Gleckler, , B. Hewitson, , and L. Mearns, 2010a: Good practice guidance paper on assessing and combining multi model climate projections. Rep. of IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections, 13 pp. [Available online at http://www.ipcc-wg2.gov/meetings/EMs/IPCC_EM_MME_GoodPracticeGuidancePaper.pdf.]

  • Knutti, R., , R. Furrer, , C. Tebaldi, , J. Cermak, , and G. A. Meehl, 2010b: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758.

    • Search Google Scholar
    • Export Citation
  • Krzanowski, W. J., 1998: An Introduction to Statistical Modelling. John Wiley and Sons, 264 pp.

  • Livezey, R. E., , and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659.

    • Search Google Scholar
    • Export Citation
  • Mastrandrea, M. D., and Coauthors, 2010: Guidance note for lead authors of the IPCC Fifth Assessment Report on consistent treatment of uncertainties. Tech. Rep., 4 pp. [Available online at https://www.ipcc-wg1.unibe.ch/guidancepaper/ar5_uncertainty-guidance-note.pdf.]

  • McDonald, R. E., 2011: Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Climate Dyn., 37, 13991425, doi:10.1007/s00382-010-0916-x.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007a: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Meehl, G. A., , C. Covey, , K. E. Taylor, , T. Delworth, , R. J. Stouffer, , M. Latif, , B. McAvaney, , and J. F. B. Mitchell, 2007b: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Peña, M., , and H. van den Dool, 2008: Consolidation of multimodel forecasts by ridge regression: Application to Pacific sea surface temperature. J. Climate, 21, 65216538.

    • Search Google Scholar
    • Export Citation
  • Pennell, C., , and T. Reichler, 2011: On the effective number of climate models. J. Climate, 24, 23582367.

  • Räisänen, J., 2001: CO2-induced climate change in CMIP2 experiments: Quantification of agreement and role of internal variability. J. Climate, 14, 20882104.

    • Search Google Scholar
    • Export Citation
  • Sain, S. R., , D. Nychka, , and L. Mearns, 2011: Functional ANOVA and regional climate experiments: A statistical analysis of dynamic downscaling. Environmetrics, 22, 700711, doi:10.1002/env.1068.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., , and R. Knutti, 2012: On the interpretation of constrained climate model ensembles. Geophys. Res. Lett., 39, L16708, doi:10.1029/2012GL052665.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , Z. Chen, , M. Marquis, , K. Averyt, , M. Tignor, , and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stephens, M. A., 1974: EDF statistics for goodness of fit and some comparisons. J. Amer. Stat. Assoc., 69, 730737, doi:10.2307/2286009.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., , M. Collins, , J. C. Rougier, , and R. E. Chandler, 2012: Statistical problems in the probabilistic prediction of climate change. Environmetrics, 23, 364372, doi:10.1002/env.2153.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., , R. L. Smith, , D. Nychka, , and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18, 15241540.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., , J. M. Arblaster, , and R. Knutti, 2011a: Mapping model agreement on future climate projections. Geophys. Res. Lett., 38, L23701, doi:10.1029/2011GL049863.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., , B. Sansó, , and R. L. Smith, 2011b: Characterizing uncertainty of future climate change projections using hierarchical Bayesian models. Bayesian Statistics 9, J. M. Bernardo et al., Eds., Oxford University Press, 706 pp.

  • Ventura, V., , C. J. Paciorek, , and J. S. Risbey, 2004: Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. J. Climate, 17, 43434356.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., , R. Knutti, , M. A. Liniger, , and C. Appenzeller, 2010: Risks of model weighting in multimodel climate projections. J. Climate, 23, 41754191.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , J. M. Gregory, , J. G. Pinto, , M. Reyers, , and D. J. Brayshaw, 2012: Response of the north atlantic storm track to climate change shaped by oceanatmosphere coupling. Nat. Geosci., 5, 313317, doi:10.1038/ngeo1438.

    • Search Google Scholar
    • Export Citation
  • Yip, S., , C. A. T. Ferro, , D. B. Stephenson, , and E. Hawkins, 2011: A simple, coherent framework for partitioning uncertainty in climate predictions. J. Climate, 24, 46344643.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., , L. C. Shaffrey, , and K. I. Hodges, 2013a: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., , L. C. Shaffrey, , K. I. Hodges, , P. G. Sansom, , and D. B. Stephenson, 2013b: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., 1987: A potential predictability study conducted with an atmospheric general circulation model. Mon. Wea. Rev., 115, 29572974.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., 1996: Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2. Climate Dyn., 12, 825847, doi:10.1007/s003820050146.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 62 11
PDF Downloads 45 45 6

Simple Uncertainty Frameworks for Selecting Weighting Schemes and Interpreting Multimodel Ensemble Climate Change Experiments

View More View Less
  • 1 University of Exeter, Exeter, United Kingdom
  • | 2 National Centre for Atmospheric Sciences, University of Reading, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

Future climate change projections are often derived from ensembles of simulations from multiple global circulation models using heuristic weighting schemes. This study provides a more rigorous justification for this by introducing a nested family of three simple analysis of variance frameworks. Statistical frameworks are essential in order to quantify the uncertainty associated with the estimate of the mean climate change response.

The most general framework yields the “one model, one vote” weighting scheme often used in climate projection. However, a simpler additive framework is found to be preferable when the climate change response is not strongly model dependent. In such situations, the weighted multimodel mean may be interpreted as an estimate of the actual climate response, even in the presence of shared model biases.

Statistical significance tests are derived to choose the most appropriate framework for specific multimodel ensemble data. The framework assumptions are explicit and can be checked using simple tests and graphical techniques. The frameworks can be used to test for evidence of nonzero climate response and to construct confidence intervals for the size of the response.

The methodology is illustrated by application to North Atlantic storm track data from the Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble. Despite large variations in the historical storm tracks, the cyclone frequency climate change response is not found to be model dependent over most of the region. This gives high confidence in the response estimates. Statistically significant decreases in cyclone frequency are found on the flanks of the North Atlantic storm track and in the Mediterranean basin.

Corresponding author address: Philip Sansom, Harrison Building, University of Exeter, North Park Road, Exeter EX4 4QF, United Kingdom. E-mail: pgs201@exeter.ac.uk

Abstract

Future climate change projections are often derived from ensembles of simulations from multiple global circulation models using heuristic weighting schemes. This study provides a more rigorous justification for this by introducing a nested family of three simple analysis of variance frameworks. Statistical frameworks are essential in order to quantify the uncertainty associated with the estimate of the mean climate change response.

The most general framework yields the “one model, one vote” weighting scheme often used in climate projection. However, a simpler additive framework is found to be preferable when the climate change response is not strongly model dependent. In such situations, the weighted multimodel mean may be interpreted as an estimate of the actual climate response, even in the presence of shared model biases.

Statistical significance tests are derived to choose the most appropriate framework for specific multimodel ensemble data. The framework assumptions are explicit and can be checked using simple tests and graphical techniques. The frameworks can be used to test for evidence of nonzero climate response and to construct confidence intervals for the size of the response.

The methodology is illustrated by application to North Atlantic storm track data from the Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble. Despite large variations in the historical storm tracks, the cyclone frequency climate change response is not found to be model dependent over most of the region. This gives high confidence in the response estimates. Statistically significant decreases in cyclone frequency are found on the flanks of the North Atlantic storm track and in the Mediterranean basin.

Corresponding author address: Philip Sansom, Harrison Building, University of Exeter, North Park Road, Exeter EX4 4QF, United Kingdom. E-mail: pgs201@exeter.ac.uk
Save