• Allan, R., , and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172.

  • Bunge, L., , and A. J. Clarke, 2009: A verified estimation of the El Niño index Niño-3.4 since 1877. J. Climate, 22, 39793992.

  • Chou, C., , and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701.

  • Deser, C., , A. S. Phillips, , and M. A. Alexander, 2010a: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, doi:10.1029/2010GL043321.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. S. Phillips, , V. Bourdette, , and H. Teng, 2010b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , A. C. Clement, , and G. A. Vecchi, 2010: Reconciling differing views of tropical Pacific climate change. Eos, Trans. Amer. Geophys. Union, 91, 141142.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Karnauskas, K. B., , R. Seager, , A. Kaplan, , Y. Kushnir, , and M. A. Cane, 2009: Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Climate, 22, 43164321.

    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., , and M. Previdi, 2009: Do models and observations disagree on the rainfall response to global warming? J. Climate, 22, 31563166.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., 2011: A shift in western tropical Pacific sea level trends during the 1990s. J. Climate, 24, 41264138.

  • Newman, M., , G. P. Compo, , and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857.

    • Search Google Scholar
    • Export Citation
  • Parzen, E., 1962: On estimation of a probability density function and mode. Ann. Math. Stat., 33, 10651076.

  • Power, S. B., , and I. N. Smith, 2007: Weakening of the Walker circulation and apparent dominance of El Niño both reach record levels, but has ENSO really changed? Geophys. Res. Lett., 34, L18702, doi:10.1029/2007GL030854.

    • Search Google Scholar
    • Export Citation
  • Power, S. B., , and G. Kociuba, 2011: What caused the observed twentieth-century weakening of the Walker circulation? J. Climate, 24, 65016514.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., , P. Friederichs, , and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulation of ENSO. J. Climate, 17, 37613774.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., , S -P. Xie, , C. Deser, , Y. Kosaka, , and Y. M. Okumura, 2012a: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, doi:10.1038/nature11576.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., , S.-P. Xie, , A. Timmermann, , S. McGregor, , T. Ogata, , H. Kubota, , and Y. M. Okumura, 2012b: Regional patterns of tropical Indo-Pacific climate change: Evidence of the Walker circulation weakening. J. Climate, 25, 16891710.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , A. Clement, , and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89, 81–83.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Climate, 18, 20802092.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , L. Ricciardulli, , K. Hilburn, , and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235.

  • Zhang, M., , and H. Song, 2006: Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys. Res. Lett., 33, L12701, doi:10.1029/2006GL025942.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 269 269 62
PDF Downloads 158 158 42

Detectability of Changes in the Walker Circulation in Response to Global Warming

View More View Less
  • 1 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 2 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 3 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
© Get Permissions
Restricted access

Abstract

Changes in the gradients in sea level pressure (SLP) and sea surface temperature (SST) along the equatorial Pacific are analyzed in observations and 101 numerical experiments performed with 37 climate models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The ensemble of numerical experiments simulates changes in the earth’s climate during the 1870–2004 period in response to changes in natural (solar variations and volcanoes) and anthropogenic (well-mixed greenhouse gases, ozone, direct aerosol forcing, and land use) radiative forcings. A reduction in the zonal SLP gradient is present in observational records and is the typical response of the ensemble, yet only 26 out of the 101 experiments exhibit a reduced SLP gradient within 95% statistical confidence of the observed value. The multimodel response indicates a reduction of the Walker circulation to historical forcings, albeit an order of magnitude smaller than the observed value. There are multiple nonexclusive interpretations of these results: (i) the observed trend may not be entirely forced and includes a substantial component from internal variability; (ii) there are problems with the observational record that lead to a spuriously large trend; and (iii) the strength of the Walker circulation, as measured by the zonal SLP gradient, may be less sensitive to external forcing in models than in the real climate system. Analysis of a subset of experiments suggests that greenhouse gases act to weaken the circulation, but aerosol forcing drives a strengthening of the circulation, which appears to be overestimated by the models, resulting in a muted response to the combined anthropogenic forcings.

School of Ocean and Earth Science and Technology Publication Number 8813 and International Pacific Research Center Publication Number 939.

Corresponding author address: Pedro N. DiNezio, International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822. E-mail: pdn@hawaii.edu

Abstract

Changes in the gradients in sea level pressure (SLP) and sea surface temperature (SST) along the equatorial Pacific are analyzed in observations and 101 numerical experiments performed with 37 climate models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The ensemble of numerical experiments simulates changes in the earth’s climate during the 1870–2004 period in response to changes in natural (solar variations and volcanoes) and anthropogenic (well-mixed greenhouse gases, ozone, direct aerosol forcing, and land use) radiative forcings. A reduction in the zonal SLP gradient is present in observational records and is the typical response of the ensemble, yet only 26 out of the 101 experiments exhibit a reduced SLP gradient within 95% statistical confidence of the observed value. The multimodel response indicates a reduction of the Walker circulation to historical forcings, albeit an order of magnitude smaller than the observed value. There are multiple nonexclusive interpretations of these results: (i) the observed trend may not be entirely forced and includes a substantial component from internal variability; (ii) there are problems with the observational record that lead to a spuriously large trend; and (iii) the strength of the Walker circulation, as measured by the zonal SLP gradient, may be less sensitive to external forcing in models than in the real climate system. Analysis of a subset of experiments suggests that greenhouse gases act to weaken the circulation, but aerosol forcing drives a strengthening of the circulation, which appears to be overestimated by the models, resulting in a muted response to the combined anthropogenic forcings.

School of Ocean and Earth Science and Technology Publication Number 8813 and International Pacific Research Center Publication Number 939.

Corresponding author address: Pedro N. DiNezio, International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822. E-mail: pdn@hawaii.edu
Save