• Andrady, A., and Coauthors, 2012: Environmental effects of ozone depletion and its interactions with climate change: Progress report. Photochem. Photobiol. Sci., 11, 1327.

    • Search Google Scholar
    • Export Citation
  • Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11 26711 292, doi:10.5194/acp-11-11267-2011.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161.

    • Search Google Scholar
    • Export Citation
  • Egorova, T., , E. Rozanov, , J. Gröbner, , M. Hauser, , and W. Schmutz, 2012: Montreal Protocol benefits simulated with CCM SOCOL. Atmos. Chem. Phys. Discuss., 12, 17 00117 030, doi:10.5194/acpd-12-17001-2012.

    • Search Google Scholar
    • Export Citation
  • Farman, J. C., , B. G. Gardiner, , and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207210, doi:10.1038/315207a0.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , D. E. Kinnison, , and D. R. Marsh, 2012: “World avoided” simulations with the Whole Atmosphere Community Climate Model. J. Geophys. Res., 117, D23303, doi:10.1029/2012JD018430.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Kang, S., , L. M. Polvani, , J. C. Fyfe, , and M. Sigmond, 2011: Impact of polar ozone depletion on subtropical precipitation. Science, 332, 951954.

    • Search Google Scholar
    • Export Citation
  • Mäder, J. A., , J. Staehelin, , T. Peter, , D. Brunner, , H. E. Rieder, , and W. A. Stahel, 2010: Evidence for the effectiveness of the Montreal Protocol to protect the ozone layer. Atmos. Chem. Phys., 10, 12 16112 171, doi:10.5194/acp-10-12161-2010.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , T. G. Shepherd, , J. F. Scinocca, , D. A. Plummer, , M. Sigmond, , A. I. Jonsson, , and M. C. Reader, 2011: Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Climate, 24, 18501868.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , C. Covey, , T. Delworth, , M. Latif, , B. McAvaney, , J. F. B. Mitchell, , R. J. Stouffer, , and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic Change, 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Molina, M. J., , and F. S. Rowland, 1974: Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature, 249, 810812, doi:10.1038/249810a0.

    • Search Google Scholar
    • Export Citation
  • Montzka, S. A., , J. H. Butler, , J. W. Elkins, , T. M. Thompson, , A. D. Clarke, , and L. T. Lock, 1999: Present and future trends in the atmospheric burden of ozone-depleting halogens. Nature, 398, 690694, doi:10.1038/19499.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, O., , P. Braesicke, , M. M. Hurwitz, , F. M. O’Connor, , A. C. Bushell, , C. E. Johnson, , and J. A. Pyle, 2008: The world avoided by the Montreal Protocol. Geophys. Res. Lett., 35, L16811, doi:10.1029/2008GL034590.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., , and R. Swart, Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 612 pp.

  • Newchurch, M. J., , E.-S. Yang, , D. M. Cunnold, , G. C. Reinsel, , J. M. Zawodny, , and I. J. M. Russell, 2003: Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery. J. Geophys. Res., 108, 4507, doi:10.1029/2003JD003471.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., and Coauthors, 2009: What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmos. Chem. Phys., 9, 21132128, doi:10.5194/acp-9-2113-2009.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., , S. Pawson, , R. L. Fogt, , J. E. Nielsen, , and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35, L08714, doi:10.1029/2008GL033317.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , M. Previdi, , and C. Deser, 2011a: Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett., 38, L04707, doi:10.1029/2011GL046712.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , D. W. Waugh, , G. J. P. Correa, , and S.-W. Son, 2011b: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311.

  • Reinsel, G. C., , E. Weatherhead, , G. C. Tiao, , A. J. Miller, , R. M. Nagatani, , D. J. Wuebbles, , and L. E. Flynn, 2002: On detection of turnaround and recovery in trend for ozone. J. Geophys. Res., 107, 4078, doi:10.1029/2001JD000500.

    • Search Google Scholar
    • Export Citation
  • Reinsel, G. C., , A. J. Miller, , E. C. Weatherhead, , L. E. Flynn, , R. M. Nagatani, , G. C. Tiao, , and D. J. Wuebbles, 2005: Trend analysis of total ozone data for turnaround and dynamical contributions. J. Geophys. Res., 110, D16306, doi:10.1029/2004JD004662.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., , E. A. Titova, , and L. Deschamps, 2011: Rebound of Antarctic ozone. Geophys. Res. Lett., 38, L09702, doi:10.1029/2011GL047266.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., , E. A. Titova, , and L. Deschamps, 2012: Changes of the Antarctic ozone hole: Controlling mechanisms, seasonal predictability, and evolution. J. Geophys. Res., 117, D10111, doi:10.1029/2011JD016285.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., , R. R. Garcia, , D. Marsh, , and K. W. Hoppel, 2010: The role of the middle atmosphere in simulations of the troposphere during Northern Hemisphere winter: Differences between high- and low-top models. J. Atmos. Sci., 67, 30483064.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , and N. Naik, 2012: A mechanisms-based approach for detecting recent anthropogenic hydroclimate change. J. Climate, 25, 236261.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , N. Naik, , and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , Z. Chen, , M. Marquis, , K. Averyt, , M. Tignor, , and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Son, S. W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489, doi:10.1126/science.1155939.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Velders, G. J. M., , S. O. Andersen, , J. S. Daniel, , D. W. Fahey, , and M. McFarland, 2007: The importance of the Montreal Protocol in protecting climate. Proc. Natl. Acad. Sci. USA, 104, 48144819.

    • Search Google Scholar
    • Export Citation
  • Velders, G. J. M., and Coauthors, 2012: Preserving Montreal Protocol climate benefits by limiting HFCs. Science, 335, 922923.

  • WMO, 2011: Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project Rep. 52, WMO, 516 pp.

  • Wu, Y., , R. Seager, , M. Ting, , N. H. Naik, , and T. A. Shaw, 2012: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part I: Model experiments and transient thermal response in the troposphere. J. Climate, 25, 28622879.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., , R. Seager, , T. A. Shaw, , M. Ting, , and N. Naik, 2013: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part II: Atmospheric transient adjustment and its dynamics. J. Climate, 26, 918935.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., , C. S. Bretherton, , P. N. Blossey, , and M. Khairoutdinov, 2012: Fast cloud adjustment to increasing CO2 in a superparameterized climate model. J. Adv. Model. Earth Syst., 4, M05001, doi:10.1029/2011MS000092.

    • Search Google Scholar
    • Export Citation
  • Yang, E.-S., , D. M. Cunnold, , R. J. Salawitch, , M. P. McCormick, , I. J. Russell, , J. M. Zawodny, , S. Oltmans, , and M. J. Newchurch, 2006: Attribution of recovery in lower-stratospheric ozone. J. Geophys. Res., 111, D17309, doi:10.1029/2005JD006371.

    • Search Google Scholar
    • Export Citation
  • Yang, E.-S., , D. M. Cunnold, , M. J. Newchurch, , R. J. Salawitch, , M. P. McCormick, , I. J. M. Russell, , J. M. Zawodny, , and S. J. Oltmans, 2008: First stage of Antarctic ozone recovery. J. Geophys. Res., 113, D20308, doi:10.1029/2007JD009675.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 666 666 111
PDF Downloads 444 444 97

The Importance of the Montreal Protocol in Protecting Earth’s Hydroclimate

View More View Less
  • 1 Courant Institute of Mathematical Sciences, New York University, New York, New York
  • | 2 Department of Applied Physics and Applied Mathematics and Department of Earth and Environmental Sciences, Columbia University, New York, New York
  • | 3 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
© Get Permissions
Restricted access

Abstract

The 1987 Montreal Protocol regulating emissions of chlorofluorocarbons (CFCs) and other ozone-depleting substances (ODSs) was motivated primarily by the harm to human health and ecosystems arising from increased exposure to ultraviolet-B (UV-B) radiation associated with depletion of the ozone layer. It is now known that the Montreal Protocol has helped reduce radiative forcing of the climate system since CFCs are greenhouse gases (GHGs), and that ozone depletion (which is now on the verge of reversing) has been the dominant driver of atmospheric circulation changes in the Southern Hemisphere in the last half century.

This paper demonstrates that the Montreal Protocol also significantly protects Earth’s hydroclimate. Using the Community Atmospheric Model, version 3 (CAM3), coupled to a simple mixed layer ocean, it is shown that in the “world avoided” (i.e., with CFC emissions not regulated), the subtropical dry zones would be substantially drier, and the middle- and high-latitude regions considerably wetter in the coming decade (2020–29) than in a world without ozone depletion. Surprisingly, these changes are very similar, in both pattern and magnitude, to those caused by projected increases in GHG concentrations over the same period. It is further shown that, by dynamical and thermodynamical mechanisms, both the stratospheric ozone depletion and increased CFCs contribute to these changes. The results herein imply that, as a consequence of the Montreal Protocol, changes in the hydrological cycle in the coming decade will be only half as strong as what they otherwise would be.

Corresponding author address: Yutian Wu, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012. E-mail: yutian@cims.nyu.edu

Abstract

The 1987 Montreal Protocol regulating emissions of chlorofluorocarbons (CFCs) and other ozone-depleting substances (ODSs) was motivated primarily by the harm to human health and ecosystems arising from increased exposure to ultraviolet-B (UV-B) radiation associated with depletion of the ozone layer. It is now known that the Montreal Protocol has helped reduce radiative forcing of the climate system since CFCs are greenhouse gases (GHGs), and that ozone depletion (which is now on the verge of reversing) has been the dominant driver of atmospheric circulation changes in the Southern Hemisphere in the last half century.

This paper demonstrates that the Montreal Protocol also significantly protects Earth’s hydroclimate. Using the Community Atmospheric Model, version 3 (CAM3), coupled to a simple mixed layer ocean, it is shown that in the “world avoided” (i.e., with CFC emissions not regulated), the subtropical dry zones would be substantially drier, and the middle- and high-latitude regions considerably wetter in the coming decade (2020–29) than in a world without ozone depletion. Surprisingly, these changes are very similar, in both pattern and magnitude, to those caused by projected increases in GHG concentrations over the same period. It is further shown that, by dynamical and thermodynamical mechanisms, both the stratospheric ozone depletion and increased CFCs contribute to these changes. The results herein imply that, as a consequence of the Montreal Protocol, changes in the hydrological cycle in the coming decade will be only half as strong as what they otherwise would be.

Corresponding author address: Yutian Wu, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012. E-mail: yutian@cims.nyu.edu
Save