• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Attema, E. P. W., 1991: The Active Microwave Instrument on-board the ERS-1 Satellite. Proc. IEEE, 76, 791799.

  • Barkstrom, B. R., , and J. B. Hall, 1982: Earth Radiation Budget Experiment (ERBE)—An overview. J. Energy, 6, 141146.

  • Cattiaux, J., , R. Vautard, , C. Cassou, , P. Yiou, , V. Masson-Delmotte, , and F. Codron, 2010: Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett., 37, L20704, doi:10.1029/2010GL044613.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., , P. J. Rasch, , B. A. Boville, , J. J. Hack, , J. R. McCaa, , D. L. Williamson, , and B. P. Briegleb, 2006a: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006b: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630.

  • D'Andrea, F., and Coauthors, 1998: Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dyn., 14, 385407.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Dennis, J., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489, doi:10.1177/1094342011428142.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in Community Climate System Model version 4. J. Climate, 25, 26222651.

    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, doi:10.1029/2010GL046582.

    • Search Google Scholar
    • Export Citation
  • Emmons, L. K., and Coauthors, 2009: Description and evaluation of the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. Discuss., 2, 11571213, doi:10.5194/gmdd-2-1157-2009.

    • Search Google Scholar
    • Export Citation
  • Evans, K., , P. H. Lauritzen, , S. Mishra, , R. B. Neale, , M. A. Taylor, , and J. J. Tribbia, 2013: AMIP simulation with the CAM4 spectral element dynamical core. J. Climate, 26, 689709.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , S. G. Yeager, , R. B. Neale, , S. Levis, , and D. A. Bailey, 2010: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833, doi:10.1007/s00382-009-0614-8.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • Gettelman, A., and Coauthors, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., , P. Kallberg, , S. Uppala, , A. Noumura, , A. Hernandez, , and E. Serrano, 1997: ECMWF Re-Analysis Project report series: ERA description. ECMWF Tech. Rep. 1, 77 pp.

  • Gregory, D., , R. Kershaw, , and P. M. Inness, 1997: Parametrization of momentum transport by convection. II: Tests in single-column and general circulation models. Quart. J. Roy. Meteor. Soc., 123, 11531183.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., , and S. G. Warren, 2007: A gridded climatology of clouds over land (1971–96) and ocean (1954–97) from surface observations worldwide. Carbon Dioxide Information Analysis Center Tech. Rep. NDP-026E, 71 pp.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., , and A. Gettelman, 2009: Cloud influence on and response to seasonal arctic sea ice loss. J. Geophys. Res., 114, D18204, doi:10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207.

    • Search Google Scholar
    • Export Citation
  • Kershaw, R., , and D. Gregory, 1997: Parametrization of momentum transport by convection. I: Theory and cloud modelling results. Quart. J. Roy. Meteor. Soc., 123, 11331151.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. B. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311149.

    • Search Google Scholar
    • Export Citation
  • Kopp, G., , and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, doi:10.1029/2010GL045777.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2012: CAM-chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci. Model Dev., 5, 369411, doi:10.5194/gmd-5-369-2012.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19, 23352346.

  • Lauritzen, P. H., , C. J. M. Taylor, , and R. D. Nair, 2010: Rotated versions of the Jablonowski steady-state and baroclinic wave test cases: A dynamical core intercomparison. J. Adv. Model. Earth Syst.,2, 34 pp. [Available online at http://onlinelibrary.wiley.com/doi/10.3894/JAMES.2010.2.15/pdf.]

  • Lauritzen, P. H., , A. T. Mirin, , J. E. Truesdale, , K. Raeder, , J. L. Anderson, , J. Bacmeister, , and R. B. Neale, 2011: Implementation of new diffusion/filtering operators in the CAM-FV dynamical core. Int. J. High Perform. Comput. Appl., 123, 11331151, doi:10.1177/1094342011410088.

    • Search Google Scholar
    • Export Citation
  • Lin, S. J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Lin, S. J., , and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124, 24062070.

  • Loeb, N. G., , B. A. Wielicki, , D. R. Doelling, , G. L. Smith, , D. F. Keyes, , S. Kato, , N. Manalo-Smith, , and T. Wong, 2009: Toward optimal closure of the earth's top-of-atmosphere radiation budget. J. Climate, 22, 748766.

    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., , M. A. Taylor, , R. D. Nair, , P. H. Lauritzen, , H. M. Tufo, , and J. J. Tribbia, 2011: Evaluation of the HOMME dynamical core in the aquaplanet configuration of NCAR CAM4: Rainfall. J. Climate, 24, 40374055.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , J. H. Richter, , and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2011: Description of the NCAR Community Atmosphere Model (CAM4). NCAR Tech. Note NCAR/TN-485+STR, 120 pp.

  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Onogi, K., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., , and R. S. Vose, 1997: An overview of the Global Historical Climatology Network temperature database. Bull. Amer. Meteor. Soc., 78, 28372849.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., , D. B. Coleman, , N. Mahowald, , D. L. Williamson, , S. J. Lin, , B. A. Boville, , and P. Hess, 2006: Characteristics of atmospheric transport using three numerical formulations for atmospheric dynamics in a single GCM framework. J. Climate, 19, 22432266.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and A. M. Blyth, 1986: A stochastic mixing model for non-precipitating cumulus clouds. J. Atmos. Sci., 43, 27082718.

  • Raymond, D. J., , and A. M. Blyth, 1992: Extension of the stochastic mixing model to cumulonimbus clouds. J. Atmos. Sci., 49, 19681983.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., , and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. R., and Coauthors, 2011: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., , and B. J. Hoskins, 1987: On the derivation of the divergent flow from the rotational flow: The χ problem. Quart. J. Roy. Meteor. Soc., 113, 339360, doi:10.1002/qj.49711347519.

    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., , and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Program. Bull. Amer. Meteor. Soc., 64, 779784.

    • Search Google Scholar
    • Export Citation
  • Subramanian, A. C., , M. Jochum, , A. J. Miller, , R. B. Neale, , and D. E. Waliser, 2011: The Madden–Julian oscillation in CCSM4. J. Climate, 24, 62616282.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , D. Williamson, , and F. Zwiers, cited 2001: AMIP II sea surface temperature and sea ice concentration boundary conditions. [Available online at http://www-pcmdi.llnl.gov/projects/amip/AMIP2EXPDSN/BCS/amip2bcs.php.]

  • Tibaldi, S., , and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Vavrus, S., , and D. Waliser, 2008: An improved parameterization for simulating Arctic cloud amount in the CCSM3 climate model. J. Climate, 21, 56735687.

    • Search Google Scholar
    • Export Citation
  • Whitehead, J., , C. Jablonowski, , R. B. Rood, , and P. H. Lauritzen, 2011: A stability analysis of divergence damping on a latitude–longitude grid. Mon. Wea. Rev., 139, 29762993.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2013: Dependence of APE simulations on vertical resolution with the Community Atmosphere Model, version 3. J. Meteor. Soc. Japan, in press.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., , and J. Olson, 2007: A comparison of forecast errors in CAM2 and CAM3 at the ARM Southern Great Plains site. J. Climate, 20, 45724585.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2009: Effects of entrainment on convective available potential energy and closure assumptions in convection parameterization. J. Geophys. Res., 114, D07109, doi:10.1029/2008JD010976.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., , W. Lin, , C. S. Bretherton, , J. J. Hack, , and P. J. Rasch, 2003: A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model (CAM2). J. Geophys. Res., 108, 4035, doi:10.1029/2002JD002523.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 611 611 97
PDF Downloads 295 295 41

The Mean Climate of the Community Atmosphere Model (CAM4) in Forced SST and Fully Coupled Experiments

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 Center for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin
  • | 3 Pacific Northwest National Laboratory, Richland, Washington
  • | 4 School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York
© Get Permissions
Restricted access

Abstract

The Community Atmosphere Model, version 4 (CAM4), was released as part of the Community Climate System Model, version 4 (CCSM4). The finite volume (FV) dynamical core is now the default because of its superior transport and conservation properties. Deep convection parameterization changes include a dilute plume calculation of convective available potential energy (CAPE) and the introduction of convective momentum transport (CMT). An additional cloud fraction calculation is now performed following macrophysical state updates to provide improved thermodynamic consistency. A freeze-drying modification is further made to the cloud fraction calculation in very dry environments (e.g., the Arctic), where cloud fraction and cloud water values were often inconsistent in CAM3. In CAM4 the FV dynamical core further degrades the excessive trade-wind simulation, but reduces zonal stress errors at higher latitudes. Plume dilution alleviates much of the midtropospheric tropical dry biases and reduces the persistent monsoon precipitation biases over the Arabian Peninsula and the southern Indian Ocean. CMT reduces much of the excessive trade-wind biases in eastern ocean basins. CAM4 shows a global reduction in cloud fraction compared to CAM3, primarily as a result of the freeze-drying and improved cloud fraction equilibrium modifications. Regional climate feature improvements include the propagation of stationary waves from the Pacific into midlatitudes and the seasonal frequency of Northern Hemisphere blocking events. A 1° versus 2° horizontal resolution of the FV dynamical core exhibits superior improvements in regional climate features of precipitation and surface stress. Improvements in the fully coupled mean climate between CAM3 and CAM4 are also more substantial than in forced sea surface temperature (SST) simulations.

Corresponding author address: Dr. Richard B. Neale, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: rneale@ucar.edu

This article is included in the CCSM4 Special Collection.

Abstract

The Community Atmosphere Model, version 4 (CAM4), was released as part of the Community Climate System Model, version 4 (CCSM4). The finite volume (FV) dynamical core is now the default because of its superior transport and conservation properties. Deep convection parameterization changes include a dilute plume calculation of convective available potential energy (CAPE) and the introduction of convective momentum transport (CMT). An additional cloud fraction calculation is now performed following macrophysical state updates to provide improved thermodynamic consistency. A freeze-drying modification is further made to the cloud fraction calculation in very dry environments (e.g., the Arctic), where cloud fraction and cloud water values were often inconsistent in CAM3. In CAM4 the FV dynamical core further degrades the excessive trade-wind simulation, but reduces zonal stress errors at higher latitudes. Plume dilution alleviates much of the midtropospheric tropical dry biases and reduces the persistent monsoon precipitation biases over the Arabian Peninsula and the southern Indian Ocean. CMT reduces much of the excessive trade-wind biases in eastern ocean basins. CAM4 shows a global reduction in cloud fraction compared to CAM3, primarily as a result of the freeze-drying and improved cloud fraction equilibrium modifications. Regional climate feature improvements include the propagation of stationary waves from the Pacific into midlatitudes and the seasonal frequency of Northern Hemisphere blocking events. A 1° versus 2° horizontal resolution of the FV dynamical core exhibits superior improvements in regional climate features of precipitation and surface stress. Improvements in the fully coupled mean climate between CAM3 and CAM4 are also more substantial than in forced sea surface temperature (SST) simulations.

Corresponding author address: Dr. Richard B. Neale, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: rneale@ucar.edu

This article is included in the CCSM4 Special Collection.

Save