• An, S.-I., , J.-W. Kim, , S.-H. Im, , B.-M. Kim, , and J.-H. Park, 2012: Recent and future sea surface temperature trends in tropical Pacific warm pool and cold tongue regions. Climate Dyn., 39, 13731383, doi:10.1007/s00382-011-1129-7.

    • Search Google Scholar
    • Export Citation
  • Archer, C. L., , and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, doi:10.1029/2008GL033614.

  • Behringer, D. W., , M. Ji, , and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., , and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., , T. R. Knutson, , R. E. Tuleya, , J. J. Sirutis, , G. A. Vecchi, , S. T. Garner, , and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006.

  • Chan, J. C. L., 2006: Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment.” Science, 311, 1713.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2008: Decadal variations of intense typhoon occurrence in the western North Pacific. Proc. Roy. Soc., 464A, 249272.

  • Chan, J. C. L., 2009: Thermodynamic control on the climate of intense tropical cyclones. Proc. Roy. Soc., 465A, 30113021.

  • Chu, P.-S., , X. Zhao, , C.-H. Ho, , H.-S. Kim, , M.-M. Lu, , and J.-H. Kim, 2010: Bayesian forecasting of seasonal typhoon activity: A track-pattern-oriented categorization approach. J. Climate, 23, 66546668.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., , J.-H. Kim, , and Y. R. Chen, 2012: Have steering flows in the western North Pacific and the South China Sea changed over the last 50 years? Geophys. Res. Lett., 39, L10704, doi:10.1029/2012GL051709.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., , J. P. Kossin, , and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 9295.

  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485.

  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155.

  • Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179196.

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, Royal Meteorological Society, D. B. Shaw, Ed., 155–218.

  • Grossmann, I., , and M. G. Morgan, 2011: Tropical cyclones, climate change, and scientific uncertainty: What do we know, what does it mean, and what should be done? Climatic Change, 108, 543579.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., , E. Scoccimarro, , and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228.

    • Search Google Scholar
    • Export Citation
  • Hall, P., 1988: Theoretical comparison of bootstrap confidence intervals. Ann. Stat., 16, 927953.

  • Ho, C.-H., , J.-J. Baik, , J.-H. Kim, , D.-Y. Gong, , and C.-H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 17671776.

    • Search Google Scholar
    • Export Citation
  • Kamahori, H., , N. Yamazaki, , N. Mannoji, , and K. Takahashi, 2006: Variability in intense tropical cyclone days in the western North Pacific. SOLA, 2, 104107.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., , C.-H. Ho, , and P.-S. Chu, 2010: Dipolar redistribution of summertime tropical cyclone genesis between the Philippine Sea and the northern South China Sea and its possible mechanisms. J. Geophys. Res., 115, D06104, doi:10.1029/2009JD012196.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , and J. P. Kossin, 2007: New global tropical cyclone data set from ISCCP B1 geostationary satellite ovservations. J. Appl. Remote Sens., 1, 013505, doi:10.1117/1.2712816.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , and M. C. Kruk, 2010: Quantifying interagency differences in tropical cyclone best-track wind speed estimates. Mon. Wea. Rev., 138, 14591473.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163.

  • Kossin, J. P., , K. R. Knapp, , D. J. Vimont, , R. J. Murnane, , and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L04815, doi:10.1029/2006GL028836.

    • Search Google Scholar
    • Export Citation
  • Kwon, M., , J.-G. Jhun, , and K.-J. Ha, 2007: Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophys. Res. Lett., 34, L21706, doi:10.1029/2007GL031977.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., , C.-C. Wu, , K. A. Emanuel, , I.-H. Lee, , C.-R. Wu, , and I.-F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., , C.-C. Wu, , I.-F. Pun, , and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and category 5 typhoons' intensification. Mon. Wea. Rev., 136, 32883306.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., , I.-F. Pun, , and C.-C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757.

    • Search Google Scholar
    • Export Citation
  • McLeod, A. I., , K. W. Hipel, , and B. A. Bodo, 1990: Trend analysis methodology for water quality time series. Environmetrics, 2, 169200.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , B. Wang, , and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 11541169.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , J. Yoshimura, , H. Yoshimura, , R. Mizuta, , S. Kusunoki, , and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276.

    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., , C.-H. Ho, , J.-H. Kim, , and H.-S. Kim, 2011: Strong landfall typhoons in Korea and Japan in a recent decade. J. Geophys. Res., 116, D07105, doi:10.1029/2010JD014801.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., , and S.-C. Park, 2010: Strengthened tropical circulations in past three decades inferred from water vapor transport. J. Geophys. Res., 115, D15112, doi:10.1029/2009JD013713.

    • Search Google Scholar
    • Export Citation
  • Song, J.-J., , Y. Wang, , and L. Wu, 2010: Trend discrepancies among three best track data sets of western North Pacific tropical cyclones. J. Geophys. Res., 115, D12128, doi:10.1029/2009JD013058.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , H. Murakami, , and J. Yoshimura, 2009: A reduction in global tropical cyclone frequency due to global warming. SOLA, 5, 164167.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777.

  • Tu, J.-Y., , C. Chou, , and P.-S. Chu, 2009: The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific–East Asian climate change. J. Climate, 22, 36173628.

    • Search Google Scholar
    • Export Citation
  • Tu, J.-Y., , C. Chou, , P. Huang, , and R. Huang, 2011: An abrupt increase of intense typhoons over the western North Pacific in early summer. Environ. Res. Lett., 6, 034103, doi:10.1088/1748-9326/6/3/034013.

    • Search Google Scholar
    • Export Citation
  • Wada, A., , and N. Usui, 2007: Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the western North Pacific. J. Oceanogr., 63, 427447.

    • Search Google Scholar
    • Export Citation
  • Wada, A., , and J. C. L. Chan, 2008: Relationship between typhoon activity and upper ocean heat content. Geophys. Res. Lett., 35, L17603, doi:10.1029/2008GL035129.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , G. J. Holland, , J. A. Curry, , and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-R., , Y.-L. Chang, , L.-Y. Oey, , C.-W. J. Chang, , and Y.-C. Hsin, 2008: Air–sea interaction between tropical cyclone Nari and Kuroshio. Geophys. Res. Lett., 35, L12605, doi:10.1029/2008GL033942.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , and B. Wang, 2008: What has changed the proportion of intense hurricanes in the last 30 years? J. Climate, 21, 14321439.

  • Wu, L., , and H. Zhao, 2012: Dynamically derived tropical cyclone intensity changes over the western North Pacific. J. Climate, 25, 8998.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , B. Wang, , and S. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.

  • Wu, M.-C., , K.-H. Yeung, , and W.-L. Chang, 2006: Trends in western North Pacific tropical cyclone intensity. Eos, Trans. Amer. Geophys. Union, 87, 537538.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., , M. Sugi, , and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405428.

    • Search Google Scholar
    • Export Citation
  • Yu, J., , Y. Wang, , and K. Hamilton, 2010: Response of tropical cyclone potential intensity to a global warming scenario in the IPCC AR4 CGCMs. J. Climate, 23, 13541373.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 12
PDF Downloads 46 46 11

Spatially Inhomogeneous Trends of Tropical Cyclone Intensity over the Western North Pacific for 1977–2010

View More View Less
  • 1 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
  • | 2 Korea Institute of Ocean Science and Technology, Ansan, and Korea Polar Research Institute, Incheon, South Korea
  • | 3 Atmospheric and Oceanic Sciences Program and Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

The spatial distribution of trends in tropical cyclone (TC) intensity over the western North Pacific Ocean (WNP) during the period 1977–2010 was examined using five TC datasets. The spatial distribution of the TC intensity was expressed by seasonally averaged maximum wind speeds in 5° × 5° horizontal grids. The trends showed a spatial inhomogeneity, with a weakening in the tropical Philippine Sea (TP) and a strengthening in southern Japan and its southeastern ocean (SJ). This distribution could be described by TC intensification rate and genesis frequency, with the aid of the climatological direction of TC movement. The increasing intensification rate around the center of the WNP could mostly account for the increasing intensity over the SJ region, while the influence of both intensification rate and local genesis frequency mattered in the TP region because of the effect of the newly generated and less-developed weak TCs on the TC intensity. Thermodynamic variables (e.g., sea surface temperature, potential intensity, and 26°C isotherm depth) showed almost homogeneous changes in space, possibly favoring intensification rate and genesis frequency over the entire WNP. However, the decreasing intensification rate and genesis frequency in some tropical regions conflicted with the impact of thermodynamic variables; rather, they were in accord with the impact of dynamic variables (i.e., vorticity and wind shear). In conclusion, the spatially inhomogeneous trends in TC intensity could be explained by considering the thermodynamic and dynamic aspects in combination through intensification rate and genesis frequency.

Corresponding author address: Joo-Hong Kim, Korea Polar Research Institute, 12 Gaetbeol-ro, Yeonsu-gu, Incheon 406-840, South Korea. E-mail: jhkim004@gmail.com

Abstract

The spatial distribution of trends in tropical cyclone (TC) intensity over the western North Pacific Ocean (WNP) during the period 1977–2010 was examined using five TC datasets. The spatial distribution of the TC intensity was expressed by seasonally averaged maximum wind speeds in 5° × 5° horizontal grids. The trends showed a spatial inhomogeneity, with a weakening in the tropical Philippine Sea (TP) and a strengthening in southern Japan and its southeastern ocean (SJ). This distribution could be described by TC intensification rate and genesis frequency, with the aid of the climatological direction of TC movement. The increasing intensification rate around the center of the WNP could mostly account for the increasing intensity over the SJ region, while the influence of both intensification rate and local genesis frequency mattered in the TP region because of the effect of the newly generated and less-developed weak TCs on the TC intensity. Thermodynamic variables (e.g., sea surface temperature, potential intensity, and 26°C isotherm depth) showed almost homogeneous changes in space, possibly favoring intensification rate and genesis frequency over the entire WNP. However, the decreasing intensification rate and genesis frequency in some tropical regions conflicted with the impact of thermodynamic variables; rather, they were in accord with the impact of dynamic variables (i.e., vorticity and wind shear). In conclusion, the spatially inhomogeneous trends in TC intensity could be explained by considering the thermodynamic and dynamic aspects in combination through intensification rate and genesis frequency.

Corresponding author address: Joo-Hong Kim, Korea Polar Research Institute, 12 Gaetbeol-ro, Yeonsu-gu, Incheon 406-840, South Korea. E-mail: jhkim004@gmail.com
Save