• Adams, J., , M. Mann, , and C. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426, 274278, doi:10.1038/nature02101.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , F.-F. Jin, , and I.-S. Kang, 1999: The role of zonal advection feedback in phase transition and growth of ENSO in the Cane–Zebiak model. J. Meteor. Soc. Japan, 77, 11511160.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172.

  • Bony, S., , and J. L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., , and R. J. Patton, 1984: A numerical model for low-frequency equatorial dynamics. J. Phys. Oceanogr., 14, 18531863.

  • Church, J. A., , N. J. White, , and J. M. Arblaster, 2005: Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature, 438, 7477, doi:10.1038/nature04237.

    • Search Google Scholar
    • Export Citation
  • Clement, A., , R. Seager, , M. A. Cane, , and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196.

  • Emile-Geay, J., , R. Seager, , M. A. Cane, , E. Cook, , and G. H. Haug, 2008: Volcanoes and ENSO over the past millennium. J. Climate, 21, 31343148.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., , K. R. Sperber, , and K. AchutaRao, 2006: Annual cycle of global ocean heat content: Observed and simulated. J. Geophys. Res., 111, C06008, doi:10.1029/2005JC003223.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., , S. Corti, , J. Garcìa-Serrano, , F. Doblas-Reyes, , M. Balmaseda, , and L. Magnusson, 2013: The Indian Ocean: The region of highest skill worldwide in decadal climate prediction. J. Climate, 26, 726739.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., , P. Braconnot, , F. F. Jin, , S. T. Kim, , M. Kolasinski, , T. Li, , and I. Musat, 2009a: Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J. Climate, 22, 56985718.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., , A. Wittenberg, , A. Fedorov, , M. Collins, , C. Wang, , A. Capotondi, , G. J. van Oldenborgh, , and T. Stockdale, 2009b: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340.

    • Search Google Scholar
    • Export Citation
  • Handler, P., 1984: Possible association of stratospheric aerosols and El Niño type events. Geophys. Res. Lett., 11, 11211124.

  • Hasumi, H., 2006: CCSR Ocean Component Model (COCO) version 4.0. CCSR Rep. 25, 103 pp. [Available online at http://www.ccsr.u-tokyo.ac.jp/~hasumi/COCO/index.html.]

  • Hasumi, H., , and S. Emori, Eds., 2004: K-1 coupled GCM (MIROC) description. K-1 Tech. Rep., 34 pp. [Available online at http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf.]

  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829.

  • Jin, F.-F., , and S.-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26, 29892992.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., , J. M. Gregory, , M. J. Webb, , D. M. H. Sexton, , and T. C. Johns, 2007: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dyn., 30, 455465, doi:10.1007/s00382-007-0306-1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , B. J. Soden, , and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , and I.-S. Kang, 2006: Interactive feedback between the Indian Ocean and ENSO. J. Climate, 19, 17841801.

  • Kug, J.-S., , F.-F. Jin, , and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515.

    • Search Google Scholar
    • Export Citation
  • Lim, H.-G., , and S.-W Yeh, 2012: Volcanic effect on the tropical sea surface temperature in a millennium coupled model simulation. Geophysical Research Abstracts, Vol. 14, Abstract EGU2012-4574. [Abstract available online at http://meetingorganizer.copernicus.org/EGU2012/EGU2012-4574.pdf.]

  • Lindzen, R. S., , and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436.

    • Search Google Scholar
    • Export Citation
  • Lloyd, J., , E. Guilyardi, , H. Weller, , and J. Slingo, 2009: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett., 10, 170176.

    • Search Google Scholar
    • Export Citation
  • Mann, M., , M. A. Cane, , S. E. Zebiak, , and A. Clement, 2005: Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Climate, 18, 447456.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., , and A. Timmermann, 2011: The effect of explosive tropical volcanism on ENSO. J. Climate, 24, 21782191.

  • McGregor, S., , A. Timmermann, , and O. Timm, 2010: A unified proxy for ENSO and PDO variability since 1650. Climate Past, 5, 117.

  • Newman, M., , S.-I. Shin, , and M. A. Alexander, 2011: Natural variation in ENSO flavors. Geophys. Res. Lett., 38, L14705, doi:10.1029/2011GL047658.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1988: Low latitude volcanic eruptions and the El Niño-Southern Oscillation. Int. J. Climatol., 9, 9195.

  • Ohba, M., , and H. Ueda, 2006: A role of zonal gradient of SST between the Indian Ocean and the western Pacific in localized convection around the Philippines. SOLA, 2, 176179.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., , and H. Ueda, 2007: An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J. Meteor. Soc. Japan, 85, 335348.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., , and H. Ueda, 2009: Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Climate, 22, 177192.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., , and M. Watanabe, 2012: Role of the Indo-Pacific interbasin coupling in predicting asymmetric ENSO transition and duration. J. Climate, 25, 33213335.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., , D. Nohara, , and H. Ueda, 2010: Simulation of asymmetric ENSO transition in WCRP CMIP3 multimodel experiments. J. Climate, 23, 60516067.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219.

  • Robock, A., , L. Oman, , and G. Stenchikov, 2008: Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res., 113, D16101, doi:10.1029/2008JD010050.

    • Search Google Scholar
    • Export Citation
  • Sato, M., , J. Hansen, , M. McCormick, , and J. Pollack, 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98 (D12), 22 98722 994.

    • Search Google Scholar
    • Export Citation
  • Self, S., , M. R. Rampino, , J. Zhao, , and M. G. Katz, 1997: Volcanic aerosol perturbations and strong El Niño events: No general correlation. Geophys. Res. Lett., 24, 12471250.

    • Search Google Scholar
    • Export Citation
  • Shiogama, H., , T. Nagashima, , T. Yokohata, , S. A. Crooks, , and T. Nozawa, 2006: Influence of volcanic activity and changes in solar irradiance on surface air temperatures in the early twentieth century. Geophys. Res. Lett., 33, L09702, doi:10.1029/2005GL025622.

    • Search Google Scholar
    • Export Citation
  • Shiogama, H., , S. Emori, , T. Mochizuki, , S. Yasunaka, , T. Yokohata, , M. Ishii, , T. Nozawa, , and M. Kimoto, 2010: Possible influence of volcanic activity on the decadal potential predictability of the natural variability in near-term climate predictions. Adv. Meteor., 2010, 657318, doi:10.1155/2010/657318.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., , K. Hamilton, , R. J. Stouffer, , A. Robock, , V. Ramaswamy, , B. Santer, , and H.-F. Graf, 2006: Artic oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res., 111, D07107, doi:10.1029/2005JD006286.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., , T. Delworth, , and A. Wittenberg, 2007: Volcanic climate impacts and ENSO interactions. Eos, Trans. Amer. Geophys. Union, Vol. 88 (Spring Meeting Suppl.), Abstract A43D-09.

  • Stothers, R., 2000: Climatic and demographic consequences of the massive volcanic eruption of 1258. Climatic Change, 45, 361374.

  • Sun, D.-Z., , Y. Yu, , and T. Zhang, 2009: Tropical water vapor and cloud feedbacks in climate models: A further assessment using coupled simulations. J. Climate, 22, 12871304.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , B. Dong, , and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, doi:10.1029/2006GL028164.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., , C. Menkes, , J. P. Boulanger, , P. Delecluse, , E. Guilyardi, , M. J. McPhaden, , and G. Madec, 2001: A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J. Phys. Oceanogr., 31, 16491675.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , M. Chikira, , Y. Imada, , and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543562.

  • Xie, S.-P., , H. Annamalai, , F. A. Schott, , and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , K. Hu, , J. Hafner, , H. Tokinaga, , Y. Du, , G. Huang, , and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747.

    • Search Google Scholar
    • Export Citation
  • Yokohata, T., , S. Emori, , T. Nozawa, , Y. Tsushima, , T. Ogura, , and M. Kimoto, 2005: Climate response to volcanic forcing: Validation of climate sensitivity of a coupled atmosphere–ocean general circulation model. Geophys. Res. Lett., 32, L21710, doi:10.1029/2005GL023542.

    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., , C. Timmreck, , H.-F. Graf, , A. Rubino, , S. Lorenz, , K. Lohmann, , K. Krüger, , and J. H. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39, 419444, doi:10.1007/s00382-011-1167-1.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., , and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 114 114 42
PDF Downloads 77 77 32

Impact of Strong Tropical Volcanic Eruptions on ENSO Simulated in a Coupled GCM

View More View Less
  • 1 Central Research Institute of Electric Power Industry, Abiko, Japan
  • | 2 National Institute for Environmental Studies, Tsukuba, Japan
  • | 3 Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
© Get Permissions
Restricted access

Abstract

The impact of strong tropical volcanic eruptions (SVEs) on the El Niño–Southern Oscillation (ENSO) and its phase dependency is investigated using a coupled general circulation model (CGCM). This paper investigates the response of ENSO to an idealized SVE forcing, producing a peak perturbation of global-mean surface shortwave radiation larger than −6.5 W m−2. Radiative forcing due to volcanic aerosols injected into the stratosphere induces tropical surface cooling around the volcanic forcing peak. Identical-twin forecast experiments of an ENSO-neutral year in response to an SVE forcing show an El Niño–like warming lagging one year behind the peak forcing. In addition to a reduced role of the mean subsurface water upwelling (known as the dynamical thermostat mechanism), the rapid land surface cooling around the Maritime Continent weakens the equatorial Walker circulation, contributing to the positive zonal gradient of sea surface temperature (SST) and precipitation anomalies over the equatorial Pacific. Since the warm and cold phases of ENSO exhibit significant asymmetry in their transition and duration, the impact of a SVE forcing on El Niño and La Niña is also investigated. In the warm phase of ENSO, the prediction skill of the SVE-forced experiments rapidly drops approximately six months after the volcanic peak. Since the SVE significantly facilitates the duration of El Niño, the following transition from warm to cold ENSO is disrupted. The impact of SVE forcing on La Niña is, however, relatively weak. These results imply that the intensity of a dynamical thermostat-like response to a SVE could be dependent on the phase of ENSO.

Corresponding author address: Masamichi Ohba, Central Research Institute of Electric Power Industry, Environmental Science Research Laboratory, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan. E-mail: oba-m@criepi.denken.or.jp

Abstract

The impact of strong tropical volcanic eruptions (SVEs) on the El Niño–Southern Oscillation (ENSO) and its phase dependency is investigated using a coupled general circulation model (CGCM). This paper investigates the response of ENSO to an idealized SVE forcing, producing a peak perturbation of global-mean surface shortwave radiation larger than −6.5 W m−2. Radiative forcing due to volcanic aerosols injected into the stratosphere induces tropical surface cooling around the volcanic forcing peak. Identical-twin forecast experiments of an ENSO-neutral year in response to an SVE forcing show an El Niño–like warming lagging one year behind the peak forcing. In addition to a reduced role of the mean subsurface water upwelling (known as the dynamical thermostat mechanism), the rapid land surface cooling around the Maritime Continent weakens the equatorial Walker circulation, contributing to the positive zonal gradient of sea surface temperature (SST) and precipitation anomalies over the equatorial Pacific. Since the warm and cold phases of ENSO exhibit significant asymmetry in their transition and duration, the impact of a SVE forcing on El Niño and La Niña is also investigated. In the warm phase of ENSO, the prediction skill of the SVE-forced experiments rapidly drops approximately six months after the volcanic peak. Since the SVE significantly facilitates the duration of El Niño, the following transition from warm to cold ENSO is disrupted. The impact of SVE forcing on La Niña is, however, relatively weak. These results imply that the intensity of a dynamical thermostat-like response to a SVE could be dependent on the phase of ENSO.

Corresponding author address: Masamichi Ohba, Central Research Institute of Electric Power Industry, Environmental Science Research Laboratory, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan. E-mail: oba-m@criepi.denken.or.jp
Save