• Andersen, J. A., , and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. R., , and D. E. Stevens, 1987: The response of the tropical atmosphere to low frequency thermal forcing. J. Atmos. Sci., 44, 676686.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., , and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 29222939.

  • Deng, L., , and X. Wu, 2010: Effects of convective processes on GCM simulations of the Madden–Julian oscillation. J. Climate, 23, 352377.

    • Search Google Scholar
    • Export Citation
  • Deng, L., , and X. Wu, 2011: Physical mechanisms for the maintenance of GCM-simulated Madden–Julian oscillation over the Indian Ocean and Pacific. J. Climate, 24, 24692482.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., , and D. A. Randall, 1994: Low-frequency oscillations in radiative–convective systems. J. Atmos. Sci., 51, 10891099.

  • Hu, Q., , and D. A. Randall, 1995: Low-frequency oscillations in radiative-convective systems. Part II: An idealized model. J. Atmos. Sci., 52, 478490.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kemball-Cook, S. R., , and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793.

  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. A. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311149.

    • Search Google Scholar
    • Export Citation
  • Liu, P., , B. Wang, , K. R. Sperber, , T. Li, , and G. A. Meehl, 2005: MJO in the NCAR CAM2 with the Tiedtke convective scheme. J. Climate, 18, 30073020.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation: A review. Mon. Wea. Rev., 122, 814837.

  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. L. Hartmann, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 20152034.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , A. H. Sobel, , and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model Earth Syst., 2, 124, doi:10.3894/JAMES.2010.2.5.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and J. T. Bacmeister, 2012: Diagnosis of tropical biases and the MJO from patterns in the MERRA analysis tendency fields. J. Climate, 25, 62026214.

    • Search Google Scholar
    • Export Citation
  • Myers, D., , and D. E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Climate, 16, 929950.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2003: Aqua: An Earth-Observing Satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens., 41, 173183.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., , and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time, near-field behavior. J. Atmos. Sci., 44, 458498.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , and E. D. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , D. E. Waliser, , E. J. Fetzer, , B. H. Lambrigtsen, , Y. L. Yung, , and B. Wang, 2006: Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., , K. Yamazaki, , A. Kitoh, , and T. Ose, 1988: The equatorial 30-60 day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901.

    • Search Google Scholar
    • Export Citation
  • Tung, W. W., , and M. Yanai, 2002: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59, 18571871.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 14231457.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , X. Liang, , and G. J. Zhang, 2003: Seasonal migration of ITCZ precipitation across the equator: Why can't GCMs simulate it? Geophys. Res. Lett., 30, 1824, doi:10.1029/2003GL017198.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , L. Deng, , X. Song, , G. Vettoretti, , W. R. Peltier, , and G. J. Zhang, 2007a: Impact of a modified convective scheme on the Madden–Julian oscillation and El Niño–Southern Oscillation in a coupled climate model. Geophys. Res. Lett., 34, L16823, doi:10.1029/2007GL030637.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , L. Deng, , X. Song, , and G. J. Zhang, 2007b: Coupling of convective momentum transport with convective heating in global climate simulations. J. Atmos. Sci., 64, 13341349.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840858.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., , and Y. Hayashi, 1984: A simple diagnostic model for the 30–50 day oscillation in the tropics. J. Meteor. Soc. Japan, 62, 709717.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , and S. P. Anderson, 2003: Sensitivity of intraseasonal perturbations in SST to the structure of the MJO. J. Atmos. Sci., 60, 21962207.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, 4220, doi:10.1029/2001JD001005.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and H. R. Cho, 1991: Parameterization of the vertical transport of momentum by cumulus clouds. Part I: Theory. J. Atmos. Sci., 48, 14831492.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Role of convective-scale momentum transport in climate simulation. J. Geophys. Res., 100, 14171426.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and X. Wu, 2003: Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. J. Atmos. Sci., 60, 11201139.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and M. Mu, 2005: Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revised Zhang–McFarlane convection parameterization scheme. J. Climate, 18, 40464064.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 4
PDF Downloads 32 32 2

Comparison of Moist Static Energy and Budget between the GCM-Simulated Madden–Julian Oscillation and Observations over the Indian Ocean and Western Pacific

View More View Less
  • 1 School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China, and Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa
  • | 2 Pacific Northwest National Laboratory, Richland, Washington
© Get Permissions
Restricted access

Abstract

The moist static energy (MSE) anomalies and MSE budget associated with the Madden–Julian oscillation (MJO) simulated in the Iowa State University General Circulation Model (ISUGCM) over the Indian and Pacific Oceans are compared with observations. Different phase relationships between MJO 850-hPa zonal wind, precipitation, and surface latent heat flux are simulated over the Indian Ocean and western Pacific, which are greatly influenced by the convection closure, trigger conditions, and convective momentum transport (CMT). The moist static energy builds up from the lower troposphere 15–20 days before the peak of MJO precipitation, and reaches the maximum in the middle troposphere (500–600 hPa) near the peak of MJO precipitation. The gradual lower-tropospheric heating and moistening and the upward transport of moist static energy are important aspects of MJO events, which are documented in observational studies but poorly simulated in most GCMs. The trigger conditions for deep convection, obtained from the year-long cloud-resolving model (CRM) simulations, contribute to the striking difference between ISUGCM simulations with the original and modified convection schemes and play the major role in the improved MJO simulation in ISUGCM. Additionally, the budget analysis with the ISUGCM simulations shows the increase in MJO MSE is in phase with the horizontal advection of MSE over the western Pacific, while out of phase with the horizontal advection of MSE over the Indian Ocean. However, the NCEP analysis shows that the tendency of MJO MSE is in phase with the horizontal advection of MSE over both oceans.

Corresponding author address: Xiaoqing Wu, Iowa State University, 3011 Agronomy Hall, Ames, IA 50011. E-mail: wuxq@iastate.edu

Abstract

The moist static energy (MSE) anomalies and MSE budget associated with the Madden–Julian oscillation (MJO) simulated in the Iowa State University General Circulation Model (ISUGCM) over the Indian and Pacific Oceans are compared with observations. Different phase relationships between MJO 850-hPa zonal wind, precipitation, and surface latent heat flux are simulated over the Indian Ocean and western Pacific, which are greatly influenced by the convection closure, trigger conditions, and convective momentum transport (CMT). The moist static energy builds up from the lower troposphere 15–20 days before the peak of MJO precipitation, and reaches the maximum in the middle troposphere (500–600 hPa) near the peak of MJO precipitation. The gradual lower-tropospheric heating and moistening and the upward transport of moist static energy are important aspects of MJO events, which are documented in observational studies but poorly simulated in most GCMs. The trigger conditions for deep convection, obtained from the year-long cloud-resolving model (CRM) simulations, contribute to the striking difference between ISUGCM simulations with the original and modified convection schemes and play the major role in the improved MJO simulation in ISUGCM. Additionally, the budget analysis with the ISUGCM simulations shows the increase in MJO MSE is in phase with the horizontal advection of MSE over the western Pacific, while out of phase with the horizontal advection of MSE over the Indian Ocean. However, the NCEP analysis shows that the tendency of MJO MSE is in phase with the horizontal advection of MSE over both oceans.

Corresponding author address: Xiaoqing Wu, Iowa State University, 3011 Agronomy Hall, Ames, IA 50011. E-mail: wuxq@iastate.edu
Save