• Akerman, H. J., , and M. Johansson, 2008: Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafrost Periglacial Processes, 19, 279292, doi:10.1002/ppp.626.

    • Search Google Scholar
    • Export Citation
  • Anisimov, O., , and F. Nelson, 1996: Permafrost distribution in the Northern Hemisphere under scenarios of climatic change. Global Planet. Change, 14, 5972, doi:10.1016/0921-8181(96)00002-1.

    • Search Google Scholar
    • Export Citation
  • Anisimov, O., , N. Shiklomanov, , and F. Nelson, 1997: Global warming and active-layer thickness: Results from transient general circulation models. Global Planet. Change, 15, 6177, doi:10.1016/S0921-8181(97)00009-X.

    • Search Google Scholar
    • Export Citation
  • BCC, cited 2012: BCC_AVIM 1.0. Beijing Climate Center. [Available online at http://bcc.cma.gov.cn/bcccsm/web/channel-42.htm.]

  • Boone, A., , V. Masson, , T. Meyers, , and J. Noilhan, 2000: The influence of the inclusion of soil freezing on simulations by a soil–vegetation–atmosphere transfer scheme. J. Appl. Meteor., 39, 15441569.

    • Search Google Scholar
    • Export Citation
  • Brown, J., , O. J. Ferrians Jr., , J. A. Heginbottom, , and E. S. Melnikov, Eds., 1997: Circum-Arctic Map of Permafrost and Ground-Ice Conditions. U.S. Geological Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral Resources, Circum-Pacific Map Series CP-45, scale 1:10,000,000, 1 sheet.

  • Brown, R., , and B. Brasnett, cited 2010: Canadian Meteorological Centre (CMC) daily snow depth analysis data. National Snow and Ice Data Center. [Available online at http://nsidc.org/data/NSIDC-0447.html.]

  • Cheng, G., , and T. Wu, 2007: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res., 112, F02S03, doi:10.1029/2006JF000631.

    • Search Google Scholar
    • Export Citation
  • Christensen, T., , T. Johansson, , H. Akerman, , M. Mastepanov, , N. Malmer, , T. Friborg, , P. Crill, , and B. Svensson, 2004: Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophys. Res. Lett., 31, L04501, doi:10.1029/2003GL018680.

    • Search Google Scholar
    • Export Citation
  • Clark, D., , I. Stirling, , and W. Calvert, 1997: Distribution, characteristics, and use of earth dens and related excavations by polar bears on the western Hudson Bay lowlands. Arctic, 50, 158166.

    • Search Google Scholar
    • Export Citation
  • Dankers, R., , E. J. Burke, , and J. Price, 2011: Simulation of permafrost and seasonal thaw depth in the JULES land surface scheme. Cryosphere, 5, 773790, doi:10.5194/tc-5-773-2011.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL's ESM2 global coupled climate–carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665.

    • Search Google Scholar
    • Export Citation
  • ECMWF-GABLS, 2012: Working Group reports. Workshop on Diurnal Cycles and the Stable Boundary Layer, ECMWF, v–xxi. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2011/GABLS/WG_Reports_workshop_Nov2011.pdf.]

  • Ek, M. B., , K. E. Mitchell, , Y. Lin, , E. Rogers, , P. Grunmann, , V. Koren, , G. Gayno, , and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Essery, R. L. H., , M. J. Best, , and P. M. Cox, 2001: MOSES 2.2 technical documentation. Hadley Centre Tech. Note 30, 30 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/9/j/HCTN_30.pdf.]

  • Farouki, O. T., 1981: Thermal Properties of Soils. CRREL Monogr., No. 81-1, Cold Regions Research and Engineering Laboratory, 151 pp.

  • Fortier, D., , M. Allard, , and Y. Shur, 2007: Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic Archipelago. Permafrost Periglacial Processes, 18, 229243, doi:10.1002/ppp.595.

    • Search Google Scholar
    • Export Citation
  • Global Soil Data Task, 2000: Global gridded surfaces of selected soil characteristics (IGBP-DIS). International Geosphere–Biosphere Programme—Data and Information Services, doi:10.3334/ORNLDAAC/569.

  • Gordon, H. B., and Coauthors, 2002: The CSIRO Mk3 climate system model. CSIRO Tech. Paper 60, 130 pp. [Available online at http://www.cmar.csiro.au/e-print/open/gordon_2002a.pdf.]

  • Harding, R., and Coauthors, 2011: WATCH: Current knowledge of the terrestrial global water cycle. J. Hydrometeor., 12, 11491156.

  • Heginbottom, J. A., , J. Brown, , E. S. Melnikov, , and O. J. Ferrians Jr., 1993: Circumarctic map of permafrost and ground ice conditions. Proceedings of the Sixth International Conference on Permafrost, Vol. 2, South China University of Technology Press, 1132–1136.

    • Search Google Scholar
    • Export Citation
  • Ji, J., 1995: A climate-vegetation interaction model: Simulating physical and biological processes at the surface. J. Biogeogr., 22, 20632069.

    • Search Google Scholar
    • Export Citation
  • Jorgenson, M., , Y. Shur, , and E. Pullman, 2006: Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett., 33, L02503, doi:10.1029/2005GL024960.

    • Search Google Scholar
    • Export Citation
  • Koster, R., , M. Suarez, , A. Ducharne, , M. Stieglitz, , and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105 (D20), 24 80924 822.

    • Search Google Scholar
    • Export Citation
  • Koven, C., , W. Riley, , and A. Stern, 2013: Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Climate, 26, 18771900.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. A., , L. S. Garagula, , K. A. Kondrat'yeva, , and V. G. Melamed, 1977: Fundamentals of Frost Forecasting in Geological Engineering Investigations. CRREL Draft Translation 606, 489 pp.

  • Larsen, P. H., , S. Goldsmith, , O. Smith, , M. L. Wilson, , K. Strzepek, , P. Chinowsky, , and B. Saylor, 2008: Estimating future costs for Alaska public infrastructure at risk from climate change. Global Environ. Change, 18, 442457, doi:10.1016/j.gloenvcha.2008.03.005.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , and A. G. Slater, 2005: A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Res. Lett., 32, L24401, doi:10.1029/2005GL025080.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , and A. G. Slater, 2010: The contribution of snow condition trends to future ground climate. Climate Dyn., 34, 969981, doi:10.1007/s00382-009-0537-4.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , A. G. Slater, , V. E. Romanovsky, , and D. J. Nicolsky, 2008: Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J. Geophys. Res., 113, F02011, doi:10.1029/2007JF000883.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , A. G. Slater, , and S. C. Swenson, 2012: Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Climate, 25, 22072225.

    • Search Google Scholar
    • Export Citation
  • LeMoigne, P., and Coauthors, 2009: SURFEX scientific documentation. SURFEX Tech. Rep., Vol. 5, 211 pp. [Available online at http://www.cnrm.meteo.fr/surfex/IMG/pdf/surfex_scientific_documentation.pdf.]

  • Lloyd, A., , K. Yoshikawa, , C. Fastie, , L. Hinzman, , and M. Fraver, 2003: Effects of permafrost degradation on woody vegetation at Arctic treeline on the Seward Peninsula, Alaska. Permafrost Periglacial Processes, 14, 93101, doi:10.1002/ppp.446.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., , and R. Knutti, 2012: September Arctic sea ice predicted to disappear near 2°C global warming above present. J. Geophys. Res., 117, D06104, doi:10.1029/2011JD016709.

    • Search Google Scholar
    • Export Citation
  • Nelson, F., , and S. Outcalt, 1987: A computational method for prediction and regionalization of permafrost. Arct. Alp. Res., 19, 279288, doi:10.2307/1551363.

    • Search Google Scholar
    • Export Citation
  • Oberman, N. G., 2008: Contemporary permafrost degradation of northern European Russia. Proceedings of the Ninth International Conference on Permafrost, D. L. Kane and K. M. Hinkel, Eds., Vol. 2, Institute of Northern Engineering, University of Alaska Fairbanks, 1305–1310.

  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 174 pp. [Available online at http://www.cgd.ucar.edu/tss/clm/distribution/clm3.0/TechNote/CLM_Tech_Note.pdf.]

  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp. [Available online at http://www.cesm.ucar.edu/models/ccsm4.0/clm/CLM4_Tech_Note.pdf.]

  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute Rep. 349, 127 pp.

  • Romanovsky, V. E., , and T. E. Osterkamp, 1997: Thawing of the active layer on the coastal plain of the Alaskan Arctic. Permafrost Periglacial Processes, 8, 122.

    • Search Google Scholar
    • Export Citation
  • Romanovsky, V. E., , S. L. Smith, , and H. H. Christiansen, 2010: Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: A synthesis. Permafrost and Periglacial Processes, 21, 106116, doi:10.1002/ppp.689.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., , and F. Abramopoulos, 1997: Land-surface model development for the GISS GCM. J. Climate, 10, 20402054.

  • Rouse, W., and Coauthors, 1997: Effects of climate change on the freshwaters of arctic and subarctic North America. Hydrol. Processes, 11, 873902.

    • Search Google Scholar
    • Export Citation
  • Rowland, J. C., and Coauthors, 2010: Arctic landscapes in transition: Responses to thawing permafrosts, Eos, Trans. Amer. Geophys. Union, 91, 229230, doi:10.1029/2010EO260001.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Saito, K., , M. Kimoto, , T. Zhang, , K. Takata, , and S. Emori, 2007: Evaluating a high-resolution climate model: Simulated hydrothermal regimes in frozen ground regions and their change under the global warming scenario. J. Geophys. Res., 112, F02S11, doi:10.1029/2006JF000577.

    • Search Google Scholar
    • Export Citation
  • Sato, N., , P. Sellers, , D. Randall, , E. Schneider, , J. Shukla, , J. Kinter, , Y. Hou, , and E. Albertazzi, 1989: Effects of implementing the simple biosphere model in a general circulation model. J. Atmos. Sci., 46, 27572782.

    • Search Google Scholar
    • Export Citation
  • Sazonova, T., , and V. Romanovsky, 2003: A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. Permafrost Periglacial Processes, 14, 125139, doi:10.1002/ppp.449.

    • Search Google Scholar
    • Export Citation
  • Schuur, E. A. G., and Coauthors, 2008: Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience, 58, 701714, doi:10.1641/B580807.

    • Search Google Scholar
    • Export Citation
  • Schuur, E. A. G., , J. G. Vogel, , K. G. Crummer, , H. Lee, , J. O. Sickman, , and T. E. Osterkamp, 2009: The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556559, doi:10.1038/nature08031.

    • Search Google Scholar
    • Export Citation
  • Sellers, P., , Y. Mintz, , Y. Sud, , and A. Dalcher, 1986: A Simple Biosphere Model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505531.

    • Search Google Scholar
    • Export Citation
  • Slater, A., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2, 725.

    • Search Google Scholar
    • Export Citation
  • Smith, L., , Y. Sheng, , G. MacDonald, , and L. Hinzman, 2005: Disappearing Arctic lakes. Science, 308, 1429, doi:10.1126/science.1108142.

  • Stendel, M., , and J. Christensen, 2002: Impact of global warming on permafrost conditions in a coupled GCM. Geophys. Res. Lett., 29 (13), doi:10.1029/2001GL014345.

    • Search Google Scholar
    • Export Citation
  • Takata, K., , S. Emori, , and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222, doi:10.1016/S0921-8181(03)00030-4.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Thibault, S., , and S. Payette, 2009: Recent permafrost degradation in bogs of the James Bay area, northern Quebec, Canada. Permafrost Periglacial Processes, 20, 383389, doi:10.1002/ppp.660.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D., 2000: The Canadian Land Surface Scheme (CLASS): Its history and future. Atmos.–Ocean, 38, 113.

  • Viterbo, P., , A. Beljaars, , J. Mahfouf, , and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125A, 24012426, doi:10.1256/smsqj.55903.

    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., , and V. N. Lykosov, 1998a: Parametrization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: I. Formulation and simulations based on local observational data. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 34, 453465.

    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., , and V. N. Lykosov, 1998b: Parametrization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: II. Numerical experiments on climate modeling. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 34, 622633.

    • Search Google Scholar
    • Export Citation
  • Wrona, F. J., , T. D. Prowse, , J. D. Reist, , J. E. Hobbie, , L. M. J. Levesque, , and W. F. Vincent, 2006: Climate change effects on aquatic biota, ecosystem structure and function. Ambio, 35, 359369, doi:10.1579/0044-7447(2006)35[359:CCEOAB]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, M., , F. E. Nelson, , N. I. Shiklomanov, , D. Guo, , and G. Wan, 2010: Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Sci. Rev., 103, 3144, doi:10.1016/j.earscirev.2010.07.002.

    • Search Google Scholar
    • Export Citation
  • Yershov, E. D., 1998: General Geocryology. Cambridge University Press, 580 pp.

  • Yoshikawa, K., , and L. Hinzman, 2003: Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafrost Periglacial Processes, 14, 151160, doi:10.1002/ppp.451.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., 2005: Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys., 43, RG4002, doi:10.1029/2004RG000157.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , J. Heginbottom, , R. Barry, , and J. Brown, 2000: Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere. Polar Geogr., 24, 126131.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , W. Chen, , and D. W. Riseborough, 2008: Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change. Global Planet. Change, 60, 443456, doi:10.1016/j.gloplacha.2007.05.003.

    • Search Google Scholar
    • Export Citation
  • Zobler, L., 1986: A world soil file for global climate modelling. NASA Tech. Memo. 87802, 32 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 309 309 101
PDF Downloads 206 206 63

Diagnosing Present and Future Permafrost from Climate Models

View More View Less
  • 1 National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
  • 2 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Permafrost is a characteristic aspect of the terrestrial Arctic and the fate of near-surface permafrost over the next century is likely to exert strong controls on Arctic hydrology and biogeochemistry. Using output from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), the authors assess its ability to simulate present-day and future permafrost. Permafrost extent diagnosed directly from each climate model's soil temperature is a function of the modeled surface climate as well as the ability of the land surface model to represent permafrost physics. For each CMIP5 model these two effects are separated by using indirect estimators of permafrost driven by climatic indices and compared to permafrost extent directly diagnosed via soil temperatures. Several robust conclusions can be drawn from this analysis. Significant air temperature and snow depth biases exist in some model's climates, which degrade both directly and indirectly diagnosed permafrost conditions. The range of directly calculated present-day (1986–2005) permafrost area is extremely large (~4–25 × 106 km2). Several land models contain structural weaknesses that limit their skill in simulating cold region subsurface processes. The sensitivity of future permafrost extent to temperature change over the present-day observed permafrost region averages (1.67 ± 0.7) × 106 km2 °C−1 but is a function of the spatial and temporal distribution of climate change. Because of sizable differences in future climates for the representative concentration pathway (RCP) emission scenarios, a wide variety of future permafrost states is predicted by 2100. Conservatively, the models suggest that for RCP4.5, permafrost will retreat from the present-day discontinuous zone. Under RCP8.5, sustainable permafrost will be most probable only in the Canadian Archipelago, Russian Arctic coast, and east Siberian uplands.

Corresponding author address: Andrew G. Slater, National Snow and Ice Data Center, CIRES, University of Colorado Boulder, Boulder, CO 80309. E-mail: aslater@kryos.colorado.edu

Abstract

Permafrost is a characteristic aspect of the terrestrial Arctic and the fate of near-surface permafrost over the next century is likely to exert strong controls on Arctic hydrology and biogeochemistry. Using output from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), the authors assess its ability to simulate present-day and future permafrost. Permafrost extent diagnosed directly from each climate model's soil temperature is a function of the modeled surface climate as well as the ability of the land surface model to represent permafrost physics. For each CMIP5 model these two effects are separated by using indirect estimators of permafrost driven by climatic indices and compared to permafrost extent directly diagnosed via soil temperatures. Several robust conclusions can be drawn from this analysis. Significant air temperature and snow depth biases exist in some model's climates, which degrade both directly and indirectly diagnosed permafrost conditions. The range of directly calculated present-day (1986–2005) permafrost area is extremely large (~4–25 × 106 km2). Several land models contain structural weaknesses that limit their skill in simulating cold region subsurface processes. The sensitivity of future permafrost extent to temperature change over the present-day observed permafrost region averages (1.67 ± 0.7) × 106 km2 °C−1 but is a function of the spatial and temporal distribution of climate change. Because of sizable differences in future climates for the representative concentration pathway (RCP) emission scenarios, a wide variety of future permafrost states is predicted by 2100. Conservatively, the models suggest that for RCP4.5, permafrost will retreat from the present-day discontinuous zone. Under RCP8.5, sustainable permafrost will be most probable only in the Canadian Archipelago, Russian Arctic coast, and east Siberian uplands.

Corresponding author address: Andrew G. Slater, National Snow and Ice Data Center, CIRES, University of Colorado Boulder, Boulder, CO 80309. E-mail: aslater@kryos.colorado.edu
Save