• Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., , M. Köhler, , T. Jung, , F. Doblas-Reyes, , M. Leutbecher, , M. Rodwell, , F. Vitart, , and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , E. Maloney, , A. Sobel, , D. M. Frierson, , and L. J. Donner, 2013: Tropical intraseasonal variability in version 3 of the GFDL atmosphere model. J. Climate, 26, 426449.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. E. Peters, , and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., , and B. Soden, 2005: The sensitivity of the tropical-mean radiation budget. J. Climate, 18, 31893203.

  • Del Genio, A. D., 2012: Representing the sensitivity of convective cloud systems to tropospheric humidity in general circulation models. Surv. Geophys., 33, 637656, doi:10.1007/s10712-011-9148-9.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340.

  • Frierson, D. M. W., , D. Kim, , I.-S. Kang, , M.-I. Lee, , and J.-L. Lin, 2011: Structure of AGCM-simulated convectively coupled Kelvin waves and sensitivity to convective parameterization. J. Atmos. Sci., 68, 2645.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., , M. Salzmann, , L. J. Donner, , L. W. Horowitz, , Y. Ming, , and M. Zhao, 2011: Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. J. Climate, 24, 31453160.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and M. W. Moncrieff, 2004: Moisture–convection feedback in the tropics. Quart. J. Roy. Meteor. Soc., 130, 30813104.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., , and E. D. Maloney, 2011: The role of moisture–convection feedbacks in simulating the Madden–Julian oscillation. J. Climate, 24, 27542770.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , M. Zhao, , and B. Wyman, 2007: Dynamic radiative–convective equilibria using GCM column physics. J. Atmos. Sci., 64, 228238.

    • Search Google Scholar
    • Export Citation
  • Hirons, L. C., , P. Inness, , F. Vitart, , and P. Bechtold, 2013a: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part I: The representation of the MJO. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2060, in press.

    • Search Google Scholar
    • Export Citation
  • Hirons, L. C., , P. Inness, , F. Vitart, , and P. Bechtold, 2013b: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process-based diagnostics. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2059, in press.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2010: The ECMWF model climate: Recent progress through improved physical parametrizations. Quart. J. Roy. Meteor. Soc., 136, 11451160.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , A. H. Sobel, , E. D. Maloney, , D. M. W. Frierson, , and I.-S. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 55065520.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., , D. Kim, , M.-I. Lee, , and I.-S. Kang, 2007: Effects of cloud-radiative heating on atmospheric general circulation model (AGCM) simulations of convectively coupled equatorial waves. J. Geophys. Res., 112, D24107, doi:10.1029/2006JD008291.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., , M.-I. Lee, , D. Kim, , I.-S. Kang, , and D. M. W. Frierson, 2008: The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. J. Climate, 21, 883909.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Coauthors, 2012: TWP-ICE global atmospheric model intercomparison: Convection responsiveness and resolution impact. J. Geophys. Res., 117, D09111, doi:10.1029/2011JD017018.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and R. B. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, doi:10.1029/2011MS000042.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , S. Tulich, , J. Lin, , and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , J. Bacmeister, , M. Khairoutdinov, , C. Hannay, , and M. Zhao, 2009: Virtual field campaigns on deep tropical convection in climate models. J. Climate, 22, 244257.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., , and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , J. H. Richter, , and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57, 17411766.

  • Neelin, J. D., , I. M. Held, , and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis,S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819.

  • Raymond, D. J., , and Z. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046.

  • Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 12271282.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , P. E. Ciesielski, , and M. H. Zhang, 2008: Tropical cloud heating profiles: Analysis from KWAJEX. Mon. Wea. Rev., 136, 42894300.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , and N. A. McFarlane, 2004: The variability of modeled tropical precipitation. J. Atmos. Sci., 61, 19932015.

  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325357.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , E. D. Maloney, , G. Bellon, , and D. M. Frierson, 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nat. Geosci., 1, 653657, doi:10.1038/ngeo312.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., , and D. A. Randall, 2009: The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci., 66, 32973312.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061.

  • Tokioka, T., , K. Yamazaki, , A. Kitoh, , and T. Ose, 1988: The equatorial 30–60 day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., , and T. Jung, 2004: Influence of process interactions on MJO-like convective structures in the IFS model. Proc. ECMWF/CLIVAR Workshop on Simulation and Prediction of Intra-Seasonal Variability with Emphasis on the MJO, ECMWF, Reading, United Kingdom, 103–114.

  • Waliser, D. E., and Coauthors, 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.

    • Search Google Scholar
    • Export Citation
  • Wang, W. Q., , and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 14231457.

    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., , and L. J. Donner, 2007: The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model. J. Climate, 20, 5369.

    • Search Google Scholar
    • Export Citation
  • Woolnough, J. S., , J. M. Slingo, , and B. J. Hoskins, 2001: The organization of tropical convection by intraseasonal sea surface anomalies. Quart. J. Roy. Meteor. Soc., 127, 887907.

    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., , and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Zhang, G. J., , and M. Mu, 2005: Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revised Zhang–McFarlane convection parameterization scheme. J. Climate, 18, 40464064.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , and S.-J. Lin, 2012: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J. Atmos. Sci., 69, 22722283.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 22
PDF Downloads 7 7 2

Precipitation Partitioning, Tropical Clouds, and Intraseasonal Variability in GFDL AM2

View More View Less
  • 1 University Corporation for Atmospheric Research, Boulder, Colorado, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • 2 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • 3 Lawrence Livermore National Laboratory, Livermore, California
  • 4 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • 5 Lawrence Livermore National Laboratory, Livermore, California
© Get Permissions
Restricted access

Abstract

A set of Geophysical Fluid Dynamics Laboratory (GFDL) Atmospheric Model version 2 (AM2) sensitivity simulations by varying an entrainment threshold rate to control deep convection occurrence are used to investigate how cumulus parameterization impacts tropical cloud and precipitation characteristics. In the tropics, model convective precipitation (CP) is frequent and light, while large-scale precipitation (LSP) is intermittent and strong. With deep convection inhibited, CP decreases significantly over land and LSP increases prominently over ocean. This results in an overall redistribution of precipitation from land to ocean. A composite analysis reveals that cloud fraction (low and middle) and cloud condensate associated with LSP are substantially larger than those associated with CP. With about the same total precipitation and precipitation frequency distribution over the tropics, simulations having greater LSP fraction tend to have larger cloud condensate and low and middle cloud fraction.

Simulations having a greater LSP fraction tend to be drier and colder in the upper troposphere. The induced unstable stratification supports strong transient wind perturbations and LSP. Greater LSP also contributes to greater intraseasonal (20–100 days) precipitation variability. Model LSP has a close connection to the low-level convergence via the resolved grid-scale dynamics and, thus, a close coupling with the surface heat flux. Such wind–evaporation feedback is essential to the development and maintenance of LSP and enhances model precipitation variability. LSP has stronger dependence and sensitivity on column moisture than CP. The moisture–convection feedback, critical to tropical intraseasonal variability, is enhanced in simulations with large LSP. Strong precipitation variability accompanied by a worse mean state implies that an optimal precipitation partitioning is critical to model tropical climate simulation.

Current affiliation: Ministry of Education Key Laboratory for Earth System Modeling, Center of Earth System Sciences, Tsinghua University, Beijing 100084, China.

Corresponding author address: Yanluan Lin, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Forrestal Campus, PO Box 308, Princeton, NJ 08540. E-mail: yanluan.lin@noaa.gov

Abstract

A set of Geophysical Fluid Dynamics Laboratory (GFDL) Atmospheric Model version 2 (AM2) sensitivity simulations by varying an entrainment threshold rate to control deep convection occurrence are used to investigate how cumulus parameterization impacts tropical cloud and precipitation characteristics. In the tropics, model convective precipitation (CP) is frequent and light, while large-scale precipitation (LSP) is intermittent and strong. With deep convection inhibited, CP decreases significantly over land and LSP increases prominently over ocean. This results in an overall redistribution of precipitation from land to ocean. A composite analysis reveals that cloud fraction (low and middle) and cloud condensate associated with LSP are substantially larger than those associated with CP. With about the same total precipitation and precipitation frequency distribution over the tropics, simulations having greater LSP fraction tend to have larger cloud condensate and low and middle cloud fraction.

Simulations having a greater LSP fraction tend to be drier and colder in the upper troposphere. The induced unstable stratification supports strong transient wind perturbations and LSP. Greater LSP also contributes to greater intraseasonal (20–100 days) precipitation variability. Model LSP has a close connection to the low-level convergence via the resolved grid-scale dynamics and, thus, a close coupling with the surface heat flux. Such wind–evaporation feedback is essential to the development and maintenance of LSP and enhances model precipitation variability. LSP has stronger dependence and sensitivity on column moisture than CP. The moisture–convection feedback, critical to tropical intraseasonal variability, is enhanced in simulations with large LSP. Strong precipitation variability accompanied by a worse mean state implies that an optimal precipitation partitioning is critical to model tropical climate simulation.

Current affiliation: Ministry of Education Key Laboratory for Earth System Modeling, Center of Earth System Sciences, Tsinghua University, Beijing 100084, China.

Corresponding author address: Yanluan Lin, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Forrestal Campus, PO Box 308, Princeton, NJ 08540. E-mail: yanluan.lin@noaa.gov
Save