• Alessandri, A., , A. Borrelli, , S. Gualdi, , E. Scoccimarro, , and S. Masina, 2011: Tropical cyclone count forecasting using a dynamical seasonal prediction system: Sensitivity to improved ocean initialization. J. Climate, 24, 29632982.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., , T. R. Knutson, , R. E. Tuleya, , J. J. Sirutis, , G. A. Vecchi, , S. T. Garner, , and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B., , N. J. Dunstone, , P. R. Halloran, , T. Andrews, , and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. Widmann, , V. P. Dymnikov, , J. M. Wallace, , and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., , and S. Manabe, 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett., 17, 19171920.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. G. Barnston, , P. Klotzbach, , and C. W. Landsea, 2007a: Seasonal tropical cyclone forecasts. WMO Bull., 56, 297309.

  • Camargo, S. J., , K. A. Emanuel, , and A. H. Sobel, 2007b: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , M. Ting, , and Y. Kushnir, 2013: Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Climate Dyn., 40 (5–6), 15151529, doi:10.1007/s00382-012-1536-4.

    • Search Google Scholar
    • Export Citation
  • Caron, L. P., , C. G. Jones, , and F. Coblas-Reyes, 2013: Multi-year prediction skill of Atlantic hurricane activity in CMIP5 decadal hindcasts. Climate Dyn., doi:10.1007/s00382-013-1773-1, in press.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-Y., , J. C. H. Chiang, , M. F. Wehner, , A. Friedman, , and R. Ruedy, 2011: Sulfate aerosol control of tropical Atlantic climate over the 20th century. J. Climate, 24, 25402555.

    • Search Google Scholar
    • Export Citation
  • Chang, Y.-S., , S. Zhang, , and A. Rosati, 2011: Improvement of salinity representation in an ensemble coupled data assimilation system using pseudo salinity profiles. Geophys. Res. Lett., 38, L13609, doi:10.1029/2011GL048064.

    • Search Google Scholar
    • Export Citation
  • Chang, Y.-S., , S. Zhang, , A. Rosati, , T. Delworth, , and W. F. Stern, 2013: An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Climate Dyn., 40, 775803.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., , and S.-J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, doi:10.1029/2011GL047629.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Coauthors, 2013: An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC. Climate Dyn., 40, 12011222, doi:10.1007/s00382-012-1351-y.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2006: Interannual to decadal climate predictability in the North Atlantic: A multimodel-ensemble study. J. Climate, 19, 11951203.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Doi, T., , G. A. Vecchi, , A. J. Rosati, , and T. L. Delworth, 2012: Biases in the Atlantic ITCZ in seasonal–interannual variations for a coarse- and a high-resolution coupled climate model. J. Climate, 25, 54945511.

    • Search Google Scholar
    • Export Citation
  • Dunstone, N. J., , D. M. Smith, , and R. Eade, 2011: Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophys. Res. Lett., 38, L14701, doi:10.1029/2011GL047949.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., , and T. H. Jagger, 2006: Prediction models for annual U.S. hurricane counts. J. Climate, 19, 29352952.

  • Elsner, J. B., , X. Niu, , and T. H. Jagger, 2004: Detecting shifts in hurricane rates using a Markov chain Monte Carlo approach. J. Climate, 17, 26522666.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485.

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688.

  • Emanuel, K. A., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 54975509.

  • Emanuel, K. A., , R. Sundararajan, , and J. Williams, 2008: Hurricanes and global warming—Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., , D. J. Vimont, , A. K. Heidinger, , J. P. Kossin, , and R. Bennartz, 2009: The role of aerosols in the evolution of tropical North Atlantic Ocean temperature anomalies. Science, 324, 778781.

    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., 1915: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10, 507521.

    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., 1924: The distribution of the partial correlation coefficient. Metron, 3, 329332.

  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., , C. W. Landsea, , A. M. Mestas-Nuñez, , and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479 , doi:10.1126/science.1060040.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., , C. Cooper, , C. Senior, , H. Banks, , J. Gregory, , T. Johns, , J. Mitchell, , and R. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , and K. Bryan, 1997a: Predictability of North Atlantic multidecadal climate variability. Science, 275, 181184.

  • Griffies, S. M., , and K. Bryan, 1997b: A predictability study of simulated North Atlantic multidecadal variability. Climate Dyn., 13, 459487.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., , E. Scoccimarro, , and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., , and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107.

    • Search Google Scholar
    • Export Citation
  • ICPO, 2011: Data and bias correction for decadal climate predictions. International CLIVAR Project Office (ICPO), CLIVAR Publication Series No. 150, 6 pp. [Available online at http://www.wcrp-climate.org/decadal/index.shtml.]

  • Jarvinen, B. R., , C. J. Neumann, , and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, 24 pp.

  • Johnson, D. H., 1999: The insignificance of significance testing. J. Wildl. Manage., 63, 763772.

  • Johnson, N. L., , S. Kotz, , and N. Balakrishnan, 1995: Continuous Univariate Distributions. Vol. 2. Wiley, 752 pp.

  • Kang, S. M., , I. M. Held, , D. M. W. Frierson, , and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , and P. J. Webster, 2010: Extended-range seasonal hurricane forecasts for the North Atlantic with a hybrid dynamical-statistical model. Geophys. Res. Lett., 37, L21705, doi:10.1029/2010GL044792.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., , and W. M. Gray, 2009: Twenty-five years of Atlantic basin seasonal hurricane forecasts. Geophys. Res. Lett., 36, L09711, doi:10.1029/2009GL037580.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., , R. J. Allan, , C. K. Folland, , M. Vellinga, , and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 34773495.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , J. J. Sirutis, , S. T. Garner, , G. A. Vecchi, , and I. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364; Corrigendum, 1, 479.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163.

  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of late twenty-first century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., , M. Chen, , L. Zhang, , W. Wang, , Y. Xue, , C. Wen, , L. Marx, , and B. Huang, 2012: An analysis of the nonstationarity in the bias of sea surface temperature forecasts for the NCEP Climate Forecast System (CFS) version 2. Mon. Wea. Rev., 140, 30033016.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., , and J. A. Knaff, 2000: How much skill was there in forecasting the very strong 1997–98 El Niño? Bull. Amer. Meteor. Soc., 81, 21072119.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., , G. A. Vecchi, , L. Bengtsson, , and T. R. Knutson, 2010: Impact of duration thresholds on Atlantic tropical cyclone counts. J. Climate, 23, 25082519.

    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., , L. Stefanova, , D. W. Shin, , and S. Cocke, 2010: Seasonal Atlantic tropical cyclone hindcasting/forecasting using two sea surface temperature datasets. Geophys. Res. Lett., 37, L02804, doi:10.1029/2009GL041459.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , N. Keenlyside, , and J. Bader, 2007: Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett., 34, L01710, doi:10.1029/2006GL027969.

    • Search Google Scholar
    • Export Citation
  • Li, S., , and R. Lund, 2012: Multiple changepoint detection via genetic algorithms. J. Climate, 25, 674686.

  • MacAdie, C. J., , C. W. Landsea, , C. J. Neumann, , J. E. David, , E. Blake, , and G. R. Hammer, 2009: Tropical cyclones of the North Atlantic Ocean, 1851–2006. NCDC Tech. Memo., 238 pp. [Available online at http://www.nhc.noaa.gov/abouttrackbooks.shtml and from the National Climatic Data Center, 151 Patton Ave., Room 120, Asheville, NC 28801-5001.]

  • Mann, M. E., , and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233241, doi:10.1029/2006EO240001.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1993: TOGA–TAO and the 1991–93 El Niño–Southern Oscillation event. Oceanography, 6, 3644.

  • Meehl, G., and Coauthors, 2013: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., in press.

  • Mendelsohn, R., , K. Emanuel, , S. Chonabayashi, , and L. Bakkensen, 2012: The impact of climate change on global tropical cyclone damage. Nat. Climate Change, 2, 205209.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., , K. W. Dixon, , T. L. Delworth, , and W. Hurlin, 2010: Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys. Res. Lett., 37, L19608, doi:10.1029/2010GL044517.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean squared error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , J. Yoshimura, , H. Yoshimura, , R. Mizuta, , S. Kusumoki, , and A. Noda, 2006: Tropical cyclone climatology in a global warming climate as simulated in a 20-km-mesh global atmospheric model: Frequency and wind intensity analysis. J. Meteor. Soc. Japan, 84, 259276.

    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., , B. Chatenoux, , H. Dao, , A. De Bono, , C. Herold, , J. Kossin, , F. Mouton, , and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., , J. Gratz, , C. W. Landsea, , D. Collins, , M. A. Saunders, , and R. Musulin, 2008: Normalized hurricane damages in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., , M. Botzet, , M. Latif, , A. Roesch, , M. Wild, , and P. Tschuck, 2004: Estimating the decadal predictability of a coupled AOGCM. J. Climate, 17, 44634472.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., , J. H. Jungclaus, , A. Köhl, , D. Stammer, , and J. Marotzke, 2009: Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J. Climate, 22, 39263938.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., , and A. H. Sobel, 2011: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Climate, 24, 183193.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Robson, J., 2011: Understanding the performance of a decadal prediction system. Ph.D. thesis, University of Reading, 233 pp. [Available online at http://www.met.reading.ac.uk/~swr06jir/thesis/JIR_thesis.pdf.]

  • Robson, J., , R. Sutton, , K. Lohmann, , D. Smith, , and M. Palmer, 2012: Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Climate, 25, 41164134.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., , and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol effect. J. Climate, 15, 21032116.

  • Shen, W., , R. E. Tuleya, , and I. Ginis, 2000: A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Climate, 13, 109121.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , and J. Murphy, 2007: An objective ocean temperature and salinity analysis using covariances from a global climate model. J. Geophys. Res., 112, C02022, doi:10.1029/2005JC003172.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , S. Cusack, , A. W. Colman, , C. K. Folland, , G. R. Harris, , and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , R. Eade, , N. J. Dunstone, , D. Fereday, , J. M. Murphy, , H. Pohlmann, , and A. A. Scaife, 2010: Skillful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvement to NOAA's historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392.

  • Sobel, A. H., , I. M. Held, , and C. S. Bretherton, 2002: The ENSO signal in tropical tropospheric temperature. J. Climate, 15, 27022706.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., 1997: Coupled ocean–atmosphere forecasts in the presence of climate drift. Mon. Wea. Rev., 125, 809818.

  • Sugi, M., , H. Murakami, , and J. Yoshimura, 2009: A reduction in global tropical cyclone frequency due to global warming. SOLA, 5, 164167.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , H. Murakami, , and J. Yoshimura, 2012: On the mechanism of tropical cyclone frequency changes due to global warming. J. Meteor. Soc. Japan, 90A, 397408.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2007: Impact of scaling behavior on tropical cyclone intensities. Geophys. Res. Lett., 34, L18815, doi:10.1029/2007GL030851.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst., 9, Q04V01, doi:10.1029/2007GC001844.

    • Search Google Scholar
    • Export Citation
  • Tang, B. H., , and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31, L24204, doi:10.1029/2004GL021072.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Teng, H., , G. Branstator, , and G. A. Meehl, 2011: Predictability of the Atlantic overturning circulation and associated surface patterns in two CCSM3 climate change ensemble experiments. J. Climate, 24, 60546076.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., , F. J. Doblas-Reyes, , B. Wouters, , and W. Hazeleger, 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 12631280.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661071.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007b: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Vecchi, G. A., , and T. R. Knutson, 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Climate, 21, 35803600.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and T. R. Knutson, 2011: Estimating annual numbers of Atlantic hurricanes missing from the HURDAT database (1878–1965) using ship track density. J. Climate, 24, 17361746.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , A. T. Wittenberg, , and A. Rosati, 2006: Reassessing the role of stochastic forcing in the 1997–1998 El Niño. Geophys. Res. Lett., 33, L01706, doi:10.1029/2005GL024738.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , K. L. Swanson, , and B. J. Soden, 2008: Whither hurricane activity? Science, 322, 687689.

  • Vecchi, G. A., , M. Zhao, , H. Wang, , G. Villarini, , A. Rosati, , A. Kumar, , I. M. Held, , and R. Gudgel, 2011: Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , S. Fueglistaler, , I. M. Held, , T. R. Knutson, , and M. Zhao, 2013:Impacts of atmospheric temperature trends on tropical cyclone activity. J. Climate, 26, 38773891.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and G. A. Vecchi, 2012a: North Atlantic Power Dissipation Index (PDI) and accumulated cyclone energy (ACE): Statistical modeling and sensitivity to sea surface temperature changes. J. Climate, 25, 625637.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and G. A. Vecchi, 2012b: Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat. Climate Change, 2, 604607, doi:10.1038/nclimate1530.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and G. A. Vecchi, 2013a: Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Climate, 26, 32313240.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and G. A. Vecchi, 2013b: Multi-season lead forecast of the North Atlantic Power Dissipation Index (PDI) and accumulated cyclone energy (ACE). J. Climate, 26, 36313643.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , and J. A. Smith, 2010: Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon. Wea. Rev., 138, 26812705.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , T. R. Knutson, , and J. A. Smith, 2011a: Is the recorded increase in short duration North Atlantic tropical storms spurious? J. Geophys. Res., 116, D10114, doi:10.1029/2010JD015493.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , T. R. Knutson, , M. Zhao, , and J. A. Smith, 2011b: North Atlantic tropical storm frequency response to anthropogenic forcing: Projections and sources of uncertainty. J. Climate, 24, 32243238.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , and J. A. Smith, 2012: U.S. landfalling and North Atlantic hurricanes: Statistical modeling of their frequencies and ratios. Mon. Wea. Rev., 140, 4465.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2006: Seasonal forecasting of tropical storm frequency using a multi-model ensemble. Quart. J. Roy. Meteor. Soc., 132, 647666.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , M. Huddleston, , D. Deque, , T. Palmer, , T. Stockdale, , M. Davey, , S. Ineson, , and A. Weisheimer, 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34, L16815, doi:10.1029/2007GL030740.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wang, H., , J. K. E. Schemm, , A. Kumar, , W. Wang, , L. Long, , M. Chelliah, , G. D. Bell, , and P. Peng, 2009: A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J. Climate, 22, 44814500.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., , C. Deser, , G. A. Vecchi, , J. Ma, , H. Teng, , and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and Coauthors, 2013: A predictable AMO-like pattern in GFDL's fully-coupled ensemble initialization and decadal forecasting system. J. Climate, 26, 650661.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., , A. Karspeck, , G. Danabasoglu, , J. Tribbia, , and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 51735189.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , and T. L. Delworth, 2009: A new method for attributing climate variations over the Atlantic hurricane basin's main development region. Geophys. Res. Lett., 36, L06701, doi:10.1029/2009GL037260.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and Coauthors, 2013: Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci., 70, 11351144.

  • Zhang, S., , and A. Rosati, 2010: An inflated ensemble filter for ocean data assimilation with a biased coupled GCM. Mon. Wea. Rev., 138, 39053931.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., , M. J. Harrison, , A. Rosati, , and A. T. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , and I. M. Held, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Climate, 24, 53535364.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 38583868.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 182 182 63
PDF Downloads 34 34 11

Multiyear Predictions of North Atlantic Hurricane Frequency: Promise and Limitations

View More View Less
  • 1 Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, New Jersey
  • 2 IIHR–Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa
  • 3 Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

Retrospective predictions of multiyear North Atlantic Ocean hurricane frequency are explored by applying a hybrid statistical–dynamical forecast system to initialized and noninitialized multiyear forecasts of tropical Atlantic and tropical-mean sea surface temperatures (SSTs) from two global climate model forecast systems. By accounting for impacts of initialization and radiative forcing, retrospective predictions of 5- and 9-yr mean tropical Atlantic hurricane frequency show significant correlations relative to a null hypothesis of zero correlation. The retrospective correlations are increased in a two-model average forecast and by using a lagged-ensemble approach, with the two-model ensemble decadal forecasts of hurricane frequency over 1961–2011 yielding correlation coefficients that approach 0.9. These encouraging retrospective multiyear hurricane predictions, however, should be interpreted with care: although initialized forecasts have higher nominal skill than uninitialized ones, the relatively short record and large autocorrelation of the time series limits confidence in distinguishing between the skill caused by external forcing and that added by initialization. The nominal increase in correlation in the initialized forecasts relative to the uninitialized experiments is caused by improved representation of the multiyear tropical Atlantic SST anomalies. The skill in the initialized forecasts comes in large part from the persistence of a mid-1990s shift by the initialized forecasts, rather than from predicting its evolution. Predicting shifts like that observed in 1994/95 remains a critical issue for the success of multiyear forecasts of Atlantic hurricane frequency. The retrospective forecasts highlight the possibility that changes in observing system impact forecast performance.

Corresponding author address: Gabriel A. Vecchi, Geophysical Fluid Dynamics Laboratory, NOAA, U.S. Route 1, Forrestal Campus, Princeton, NJ 08542. E-mail: gabriel.a.vecchi@noaa.gov

This article is included in the North American Climate in CMIP5 Experiments special collection.

Abstract

Retrospective predictions of multiyear North Atlantic Ocean hurricane frequency are explored by applying a hybrid statistical–dynamical forecast system to initialized and noninitialized multiyear forecasts of tropical Atlantic and tropical-mean sea surface temperatures (SSTs) from two global climate model forecast systems. By accounting for impacts of initialization and radiative forcing, retrospective predictions of 5- and 9-yr mean tropical Atlantic hurricane frequency show significant correlations relative to a null hypothesis of zero correlation. The retrospective correlations are increased in a two-model average forecast and by using a lagged-ensemble approach, with the two-model ensemble decadal forecasts of hurricane frequency over 1961–2011 yielding correlation coefficients that approach 0.9. These encouraging retrospective multiyear hurricane predictions, however, should be interpreted with care: although initialized forecasts have higher nominal skill than uninitialized ones, the relatively short record and large autocorrelation of the time series limits confidence in distinguishing between the skill caused by external forcing and that added by initialization. The nominal increase in correlation in the initialized forecasts relative to the uninitialized experiments is caused by improved representation of the multiyear tropical Atlantic SST anomalies. The skill in the initialized forecasts comes in large part from the persistence of a mid-1990s shift by the initialized forecasts, rather than from predicting its evolution. Predicting shifts like that observed in 1994/95 remains a critical issue for the success of multiyear forecasts of Atlantic hurricane frequency. The retrospective forecasts highlight the possibility that changes in observing system impact forecast performance.

Corresponding author address: Gabriel A. Vecchi, Geophysical Fluid Dynamics Laboratory, NOAA, U.S. Route 1, Forrestal Campus, Princeton, NJ 08542. E-mail: gabriel.a.vecchi@noaa.gov

This article is included in the North American Climate in CMIP5 Experiments special collection.

Save