Interhemispheric Temperature Asymmetry over the Twentieth Century and in Future Projections

Andrew R. Friedman Department of Geography, and Berkeley Atmospheric Sciences Center, University of California, Berkeley, Berkeley, California

Search for other papers by Andrew R. Friedman in
Current site
Google Scholar
PubMed
Close
,
Yen-Ting Hwang Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Yen-Ting Hwang in
Current site
Google Scholar
PubMed
Close
,
John C. H. Chiang Department of Geography, and Berkeley Atmospheric Sciences Center, University of California, Berkeley, Berkeley, California

Search for other papers by John C. H. Chiang in
Current site
Google Scholar
PubMed
Close
, and
Dargan M. W. Frierson Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dargan M. W. Frierson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The temperature contrast between the Northern and Southern Hemispheres—the interhemispheric temperature asymmetry (ITA)—is an emerging indicator of global climate change, potentially relevant to the Hadley circulation and tropical rainfall. The authors examine the ITA in historical observations and in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) simulations. The observed annual-mean ITA (north minus south) has varied within a 0.8°C range and features a significant positive trend since 1980. The CMIP multimodel ensembles simulate this trend, with a stronger and more realistic signal in CMIP5. Both ensembles project a continued increase in the ITA over the twenty-first century, well outside the twentieth-century range. The authors mainly attribute this increase to the uneven spatial impacts of greenhouse forcing, which result in amplified warming in the Arctic and northern landmasses. The CMIP5 specific-forcing simulations indicate that, before 1980, the greenhouse-forced ITA trend was primarily countered by anthropogenic aerosols. The authors also identify an abrupt decrease in the observed ITA in the late 1960s, which is generally not present in the CMIP simulations; it suggests that the observed drop was caused by internal variability. The difference in the strengths of the northern and southern Hadley cells covaries with the ITA in the CMIP5 simulations, in accordance with previous findings; the authors also find an association with the hemispheric asymmetry in tropical rainfall. These relationships imply a northward shift in tropical rainfall with increasing ITA in the twenty-first century, though this result is difficult to separate from the response to global-mean temperature change.

Denotes Open Access content.

Corresponding author address: Andrew R. Friedman, 507 McCone Hall, University of California, Berkeley, Berkeley, CA 94720-4740. E-mail: andfried@berkeley.edu

Abstract

The temperature contrast between the Northern and Southern Hemispheres—the interhemispheric temperature asymmetry (ITA)—is an emerging indicator of global climate change, potentially relevant to the Hadley circulation and tropical rainfall. The authors examine the ITA in historical observations and in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) simulations. The observed annual-mean ITA (north minus south) has varied within a 0.8°C range and features a significant positive trend since 1980. The CMIP multimodel ensembles simulate this trend, with a stronger and more realistic signal in CMIP5. Both ensembles project a continued increase in the ITA over the twenty-first century, well outside the twentieth-century range. The authors mainly attribute this increase to the uneven spatial impacts of greenhouse forcing, which result in amplified warming in the Arctic and northern landmasses. The CMIP5 specific-forcing simulations indicate that, before 1980, the greenhouse-forced ITA trend was primarily countered by anthropogenic aerosols. The authors also identify an abrupt decrease in the observed ITA in the late 1960s, which is generally not present in the CMIP simulations; it suggests that the observed drop was caused by internal variability. The difference in the strengths of the northern and southern Hadley cells covaries with the ITA in the CMIP5 simulations, in accordance with previous findings; the authors also find an association with the hemispheric asymmetry in tropical rainfall. These relationships imply a northward shift in tropical rainfall with increasing ITA in the twenty-first century, though this result is difficult to separate from the response to global-mean temperature change.

Denotes Open Access content.

Corresponding author address: Andrew R. Friedman, 507 McCone Hall, University of California, Berkeley, Berkeley, CA 94720-4740. E-mail: andfried@berkeley.edu
Save
  • Baines, P. G., and C. K. Folland, 2007: Evidence for a rapid global climate shift across the late 1960s. J. Climate, 20, 27212744.

  • Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev, 2010: Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Climate, 23, 38883906.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, doi:10.1126/science.1204994.

    • Search Google Scholar
    • Export Citation
  • Braganza, K., D. J. Karoly, A. C. Hirst, P. Stott, R. J. Stouffer, and S. F. B. Tett, 2004: Simple indices of global climate variability and change. Part II: Attribution of climate change during the twentieth century. Climate Dyn., 22, 823838, doi:10.1007/s00382-004-0413-1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-Y., J. C. H. Chiang, M. F. Wehner, A. R. Friedman, and R. Ruedy, 2011: Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J. Climate, 24, 25402555.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., 2009: The tropics in paleoclimate. Annu. Rev. Earth Planet. Sci., 37, 263297, doi:10.1146/annurev.earth.031208.100217.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, doi:10.1007/s00382-005-0040-5.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, doi:10.1146/annurev-earth-042711-105545.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. Y. Tu, and P. H. Tan, 2007: Asymmetry of tropical precipitation change under global warming. Geophys. Res. Lett., 34, L17708, doi:10.1029/2007GL030327.

    • Search Google Scholar
    • Export Citation
  • Chung, C. E., and V. Ramanathan, 2006: Weakening of north Indian SST gradients and the monsoon rainfall in India and the Sahel. J. Climate, 19, 20362045.

    • Search Google Scholar
    • Export Citation
  • Dima, M., and G. Lohmann, 2010: Evidence for two distinct modes of large-scale ocean circulation changes over the last century. J. Climate, 23, 516.

    • Search Google Scholar
    • Export Citation
  • Drost, F., and D. Karoly, 2012: Evaluating global climate responses to different forcings using simple indices. Geophys. Res. Lett., 39, L16701, doi:10.1029/2012GL052667.

    • Search Google Scholar
    • Export Citation
  • Drost, F., D. Karoly, and K. Braganza, 2012: Communicating global climate change using simple indices: An update. Climate Dyn., 39, 989999, doi:10.1007/s00382-011-1227-6.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602607, doi:10.1038/320602a0.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y. T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci. USA, 103, 14 28814 293, doi:10.1073/pnas.0606291103.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Hwang, Y. T., D. M. W. Frierson, and J. E. Kay, 2011: Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett., 38, L17704, doi:10.1029/2011GL048546.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., and K. Braganza, 2001: Identifying global climate change using simple indices. Geophys. Res. Lett., 28, 22052208.

  • Kaufmann, R. K., and D. I. Stern, 1997: Evidence for human influence on climate from hemispheric temperature relations. Nature, 388, 3944, doi:10.1038/40332.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and B. P. Briegleb, 1993: The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 260, 311314, doi:10.1126/science.260.5106.311.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., and J. C. H. Chiang, 2007: Control of land-ocean temperature contrast by ocean heat uptake. Geophys. Res. Lett., 34, L13704, doi:10.1029/2007GL029755.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and J. C. H. Chiang, 2012: Coordinated abrupt weakening of the Eurasian and North African monsoons in the 1960s and links to extratropical North Atlantic cooling. J. Climate, 25, 35323548.

    • Search Google Scholar
    • Export Citation
  • Ma, J., and S.-P. Xie, 2013: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Climate, 26, 24822501.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient response of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818.

    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., and A. C. Clement, 2009: Simulated variability in the mean atmospheric meridional circulation over the 20th century. Geophys. Res. Lett., 36, L06704, doi:10.1029/2008GL036741.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: THE WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., M. Previdi, and C. Deser, 2011: Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett., 38, L04707, doi:10.1029/2011GL046712.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 1996: A search for human influences on the thermal structure of the atmosphere. Nature, 382, 3946, doi:10.1038/382039a0.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Naik, 2012: A mechanisms-based approach to detecting recent anthropogenic hydroclimate change. J. Climate, 25, 236261.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477.

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA's historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., S. Manabe, and K. Bryan, 1989: Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature, 342, 660662.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Terray, L., 2012: Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys. Res. Lett., 39, L19712, doi:10.1029/2012GL053046.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, P. D. Jones, and J. J. Kennedy, 2009: Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J. Climate, 22, 61206141.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, J. J. Kennedy, and P. D. Jones, 2010: An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature, 467, 444447, doi:10.1038/nature09394.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and D. W. Lea, 2010: Temperature differences between the hemispheres and ice age climate variability. Paleoceanography, 25, PA2212, doi:10.1029/2009PA001758.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H.-J. Kim, P. J. Webster, and S.-Y. Yim, 2012: Recent change of the global monsoon precipitation (1979–2008). Climate Dyn., 39, 11231135, doi:10.1007/s00382-011-1266-z.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Xie, S. P., C. Deser, G. A. Vecchi, J. Ma, H. Y. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., and V. Ramanathan, 2012: Latitudinally asymmetric response of global surface temperature: Implications for regional climate change. Geophys. Res. Lett., 39, L13706, doi:10.1029/2012GL052116.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and H. Song, 2006: Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys. Res. Lett., 33, L12701, doi:10.1029/2006GL025942.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. K. Vallis, 2006: Impact of great salinity anomalies on the low-frequency variability of the North Atlantic climate. J. Climate, 19, 470482.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4420 1356 75
PDF Downloads 2556 485 38