Extracting the Dominant SST Modes Impacting North America's Observed Climate

Fuyao Wang Nelson Institute Center for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Fuyao Wang in
Current site
Google Scholar
PubMed
Close
,
Zhengyu Liu Laboratory of Climate, Ocean–Atmosphere Studies, Peking University, Beijing, China, and Nelson Institute Center for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Zhengyu Liu in
Current site
Google Scholar
PubMed
Close
, and
Michael Notaro Nelson Institute Center for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Michael Notaro in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The seasonal impacts of the dominant sea surface temperature (SST) modes to North American climate are assessed comprehensively in observations using the multivariate generalized equilibrium feedback assessment (GEFA) method. The GEFA method is first validated before applying it to observations. Impacts of each individual SST mode are quantified and the associated mechanisms are discussed. Four critical SST modes for North American climate are found: the ENSO mode, Indian Ocean Basin (IOB) mode, North Pacific first empirical orthogonal function (EOF) mode, and tropical Atlantic second EOF mode. The impacts of the ENSO mode are consistent with previous studies qualitatively, while the impact strength is further quantified here. The IOB mode has a strong influence on surface air temperature across North America, and it is demonstrated for the first time that its impact strength might even exceed that of ENSO during both winter and summer. The IOB mode also affects the year-round precipitation. A deeper understanding of the impact of North Pacific SSTs on wintertime surface air temperature is achieved: namely, positive SST anomalies in the Kuroshio Extension region correspond to colder (warmer) air in western (eastern) North America. The tropical Atlantic has a more significant influence on North American precipitation than does the extratropical Atlantic, with colder than normal tropical North Atlantic SSTs supporting wetter conditions across much of the United States, especially during autumn. Because of the linearity of GEFA, the total impacts of multiple SST modes can be obtained by the linear combination of each individual mode's impact. The GEFA method is a potentially powerful tool for seasonal climate prediction.

Nelson Institute Center for Climatic Research Publication Number 1134.

Corresponding author address: Fuyao Wang, Center for Climatic Research, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. E-mail: fwang26@wisc.edu

Abstract

The seasonal impacts of the dominant sea surface temperature (SST) modes to North American climate are assessed comprehensively in observations using the multivariate generalized equilibrium feedback assessment (GEFA) method. The GEFA method is first validated before applying it to observations. Impacts of each individual SST mode are quantified and the associated mechanisms are discussed. Four critical SST modes for North American climate are found: the ENSO mode, Indian Ocean Basin (IOB) mode, North Pacific first empirical orthogonal function (EOF) mode, and tropical Atlantic second EOF mode. The impacts of the ENSO mode are consistent with previous studies qualitatively, while the impact strength is further quantified here. The IOB mode has a strong influence on surface air temperature across North America, and it is demonstrated for the first time that its impact strength might even exceed that of ENSO during both winter and summer. The IOB mode also affects the year-round precipitation. A deeper understanding of the impact of North Pacific SSTs on wintertime surface air temperature is achieved: namely, positive SST anomalies in the Kuroshio Extension region correspond to colder (warmer) air in western (eastern) North America. The tropical Atlantic has a more significant influence on North American precipitation than does the extratropical Atlantic, with colder than normal tropical North Atlantic SSTs supporting wetter conditions across much of the United States, especially during autumn. Because of the linearity of GEFA, the total impacts of multiple SST modes can be obtained by the linear combination of each individual mode's impact. The GEFA method is a potentially powerful tool for seasonal climate prediction.

Nelson Institute Center for Climatic Research Publication Number 1134.

Corresponding author address: Fuyao Wang, Center for Climatic Research, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. E-mail: fwang26@wisc.edu
Save
  • Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 21052128.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J. Climate, 15, 606623.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 5772.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. S. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19, 24512481.

    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896.

    • Search Google Scholar
    • Export Citation
  • Eichler, T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 20762093.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080.

    • Search Google Scholar
    • Export Citation
  • Feng, S., R. J. Oglesby, C. M. Rowe, D. B. Loope, and Q. Hu, 2008: Atlantic and Pacific SST influences on medieval drought in North America simulated by the Community Atmospheric Model. J. Geophys. Res., 113, D11101, doi:10.1029/2007JD009347.

    • Search Google Scholar
    • Export Citation
  • Feng, S., Q. Hu, and R. Oglesby, 2011: Influence of Atlantic sea surface temperatures on persistent drought in North America. Climate Dyn., 37, 569586.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and E. K. Kestenare, 2002: The surface heat flux feedback. Part I: Estimates from observations in the Atlantic and the North Pacific. Climate Dyn., 19, 633647.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L'Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11, 23102324.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., S. G. Yeager, R. B. Neale, S. Levis, and D. A. Bailey, 2010: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Guan, B., and S. Nigam, 2009: Analysis of Atlantic SST variability factoring interbasin links and the secular trend: Clarified structure of the Atlantic multidecadal oscillation. J. Climate, 22, 42284240.

    • Search Google Scholar
    • Export Citation
  • Halpert, M. S., and C. F. Ropelewski, 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577593.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28, 473485.

  • Hoerling, M. P., and A. Kumar, 2003: The perfect ocean for drought. Science, 299, 691694.

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and T. Xu, 2001: Robustness of the nonlinear climate response to ENSO's extreme phases. J. Climate, 14, 12771293.

    • Search Google Scholar
    • Export Citation
  • Holman, K. D., A. Gronewold, M. Notaro, and A. Zarrin, 2012: Improving historical precipitation estimates over the Lake Superior basin. Geophys. Res. Lett., 39, L03405, doi:10.1029/2011GL050468.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1979: An Introduction to Dynamic Meteorology. 2nd ed. International Geophysics Series, Vol. 23, Academic Press, 391 pp.

  • Honda, M., S. Yamane, and H. Nakamura, 2005: Impacts of the Aleutian–Icelandic low seesaw on surface climate during the twentieth century. J. Climate, 18, 27932802.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 60476065.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kiladis, G. N., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., R. Seager, M. Ting, N. Naik, and J. Nakamura, 2010: Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J. Climate, 23, 56105628.

    • Search Google Scholar
    • Export Citation
  • Lin, S. J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Liu, Z., and L. Wu, 2004: Atmospheric response to North Pacific SST: The role of ocean–atmosphere coupling. J. Climate, 17, 18591882.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and N. Wen, 2008: On the assessment of nonlocal climate feedback. Part II: EFA-SVD and optimal feedback modes. J. Climate, 21, 54025416.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., M. Notaro, J. Kutzbach, and N. Liu, 2006: Assessing global vegetation–climate feedbacks from observations. J. Climate, 19, 787814.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., N. Wen, and Y. Liu, 2008: On the assessment of nonlocal climate feedback. Part I: The generalized equilibrium feedback assessment. J. Climate, 21, 134148.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., N. Wen, and L. Fan, 2012a: Assessing atmospheric response to surface forcing in the observations. Part I: Cross-validation of annual response using GEFA, LIM, and FDT. J. Climate, 25, 67966816.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., L. Fan, S.-I. Shin, and Q. Liu, 2012b: Assessing atmospheric response to surface forcing in the observations. Part II: Cross-validation of seasonal response using GEFA and LIM. J. Climate, 25, 68176834.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 2011: Climate Change and Climate Modeling. Cambridge University Press, 304 pp.

  • Nigam, S., B. Guan, and A. Ruiz-Barradas, 2011: Key role of the Atlantic multidecadal oscillation in 20th century drought and wet periods over the Great Plains. Geophys. Res. Lett., 38, L16713 doi:10.1029/2011GL048650.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., and Z. Y. Liu, 2008: Statistical and dynamical assessment of vegetation feedbacks on climate over the boreal forest. Climate Dyn., 31, 691712.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., Z. Liu, and J. W. Williams, 2006: Observed vegetation–climate feedbacks in the United States. J. Climate, 19, 763786.

  • Notaro, M., Y. Wang, Z. Liu, R. Gallimore, and S. Levis, 2008: Combined statistical and dynamical assessment of simulated vegetation-rainfall during the mid-Holocene. Global Change Biol., 14, 347368.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 13931408.

    • Search Google Scholar
    • Export Citation
  • Peng, S., L. A. Mysak, J. Derome, H. Ritchie, and B. Dugas, 1995: The differences between early and midwinter atmospheric responses to sea surface temperature anomalies in the northwest Atlantic. J. Climate, 8, 137157.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., and J. S. M. Coleman, 2003: Interactions between the Atlantic multidecadal oscillation, El Niño/La Niña, and the PNA in winter Mississippi valley stream flow. Geophys. Res. Lett., 30, 1518, doi:10.1029/2003GL017216.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2, 268284.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 43554373.

  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: On the cause of the 1930s dust bowl. Science, 303, 18551859.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, W. A. Robinson, Y. Kushnir, M. Ting, H. P. Huang, and J. Velez, 2005a: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131, 15011527.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005b: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088.

    • Search Google Scholar
    • Export Citation
  • Sun, S., and G. Wang, 2012: The complexity of using a feedback parameter to quantify the soil moisture-precipitation relationship. J. Geophys. Res., 117, D11113, doi:10.1029/2011JD017173.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891907.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10, 18531873.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, and P. A. Arkin, 1988: Origins of the 1988 North American drought. Science, 242, 16401645.

  • Webster, P. J., and J. Fasullo, 2003: Dynamic theory of monsoons. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Curry, and J. A. Pyle, Eds., Academic Press, 1370–1386.

  • Wen, N., Z. Y. Liu, Q. Y. Liu, and C. Frankignoul, 2010: Observed atmospheric responses to global SST variability modes: A unified assessment using GEFA. J. Climate, 23, 17391759.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 25772586.

    • Search Google Scholar
    • Export Citation
  • Wu, R. G., and J. L. Kinter, 2009: Analysis of the relationship of U.S. droughts with SST and soil moisture: Distinguishing the time scale of droughts. J. Climate, 22, 45204538.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, Z. Liu, L. Wu, and F. Huang, 2009: Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection. Geophys. Res. Lett., 36, L19705, doi:10.1029/2009GL039559.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., M. P. Hoerling, J. Perlwitz, D.-Z. Sun, and D. Murray, 2011: Physics of U.S. surface temperature response to ENSO. J. Climate, 24, 48744887.

    • Search Google Scholar
    • Export Citation
  • Zhong, Y. F., Z. Y. Liu, and M. Notaro, 2011: A GEFA assessment of observed global ocean influence on U.S. precipitation variability: Attribution to regional SST variability modes. J. Climate, 24, 693707.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 709 411 45
PDF Downloads 285 42 6