Modes and Mechanisms of Global Water Vapor Variability over the Twentieth Century

Liping Zhang Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Liping Zhang in
Current site
Google Scholar
PubMed
Close
,
Lixin Wu Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Lixin Wu in
Current site
Google Scholar
PubMed
Close
, and
Bolan Gan Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Bolan Gan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The modes and mechanisms of the annual water vapor variations over the twentieth century are investigated based on a newly developed twentieth-century atmospheric reanalysis product. It is found that the leading modes of global water vapor variations over the twentieth century are controlled by global warming, the Atlantic multidecadal oscillation (AMO), and ENSO. On the global scale, the variations in water vapor synchronize with the sea surface temperature, which can be explained by the simple thermal Clausius–Clapeyron theory under conditions of constant relative humidity. However, on regional scales, the spatial patterns of water vapor variations associated with global warming, AMO, and ENSO are largely attributed to the atmospheric circulation dynamics, particularly the planetary divergent circulation change induced by the sea surface temperature changes. In the middle and high latitudes, the transient eddy fluxes and thermodynamics also play significant roles.

Corresponding author address: Dr. Lixin Wu, Physical Oceanography Laboratory, Ocean University of China, 5 Yushan Road, Qingdao 266003, China. E-mail: lxwu@ouc.edu.cn

Abstract

The modes and mechanisms of the annual water vapor variations over the twentieth century are investigated based on a newly developed twentieth-century atmospheric reanalysis product. It is found that the leading modes of global water vapor variations over the twentieth century are controlled by global warming, the Atlantic multidecadal oscillation (AMO), and ENSO. On the global scale, the variations in water vapor synchronize with the sea surface temperature, which can be explained by the simple thermal Clausius–Clapeyron theory under conditions of constant relative humidity. However, on regional scales, the spatial patterns of water vapor variations associated with global warming, AMO, and ENSO are largely attributed to the atmospheric circulation dynamics, particularly the planetary divergent circulation change induced by the sea surface temperature changes. In the middle and high latitudes, the transient eddy fluxes and thermodynamics also play significant roles.

Corresponding author address: Dr. Lixin Wu, Physical Oceanography Laboratory, Ocean University of China, 5 Yushan Road, Qingdao 266003, China. E-mail: lxwu@ouc.edu.cn
Save
  • Alishouse, J. C., S. A. Snyder, J. Vongsathorn, and R. R. Ferraro, 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811–816.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481–1484.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., P. L. Read, and L. A. Smith, 1992: Temperature time series. Nature, 333, 686.

  • Betts, A. K., 1998: Climate-convection feedbacks: Some further issues. Climatic Change, 39, 35–38.

  • Betts, A. K., and W. Ridgway, 1989: Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci., 46, 2621–2641.

    • Search Google Scholar
    • Export Citation
  • Broomhead, D. S., and G. P. King, 1986: Extracting qualitative dynamics from experimental data. Physica D, 20, 217–236.

  • Chen, T., M. Yan, J. Pfaendtner, and Y. Sud, 1996: Annual variation of the global precipitable water and its maintenance: Observation and climate simulation. Tellus, 48, 1–16.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., A. Hall, and A. J. Broccoli, 2004: The importance of processional signals in the tropical climate. Climate Dyn., 22, 327–341.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 1–28.

  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19, 3589–3606.

  • Dai, A., G. A. Meehl, W. M. Washington, T. M. L. Wigley, and J. M. Arblaster, 2001: Ensemble simulation of twenty-first century climate changes: Business-as-usual versus CO2 stabilization. Bull. Amer. Meteor. Soc., 82, 2377–2388.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., L. Raa, M. Schmeits, and J. Gerrits, 2006: On the physics of the Atlantic multidecadal oscillation. Ocean Dyn., 56, 36–50.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J. Geophys. Res., 102, 929–945.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and A. M. Mestas-Nuñez, 1999: Multiscale variability in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Climate, 12, 2719–2733.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., 1986: Estimating the dimension of weather and climate attractors. J. Atmos. Sci., 43, 419–432.

  • Giannini, A., Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297–311.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and S. Manabe, 1999: The role of water vapor feedback in unperturbed climate variability and global warming. J. Climate, 12, 2327–2346.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 130–163.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441–475.

  • Held, I. M., and B. J. Soden, 2006: Robust response of the hydrological cycle to global warming. J. Climate, 19, 5686–5699.

  • Kerr, R. A., 2000: A North Atlantic pacemaker for the centuries. Science, 288, 1984–1986.

  • Khon, V. C., W. Park, M. Latif, I. I. Mokhov, and B. Schneider, 2010: Response of the hydrological cycle to orbital and greenhouse gas forcing. Geophys. Res. Lett., 37, L19705, doi:10.1029/2010GL044377.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., and Coauthors, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9, 2751–2767.

    • Search Google Scholar
    • Export Citation
  • Philipona, R., B. Durr, C. Marty, A. Ohmura, and M. Wild, 2004: Radiative forcing—measured at Earth's surface—corroborate the increasing greenhouse effect. Geophys. Res. Lett., 31, L03202, doi:10.1029/2003GL018765.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2006: Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proc. Natl. Acad. Sci. USA, 103, 13 905–13 910.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. O. Gorman, and X. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 4651–4668.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. L. Jackson, V. Ramaswamy, D. Schwarzkopf, and X. Huang, 2005: The radiative signature upper tropospheric moistening. Science, 310, 841–844.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39, 667–694.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 2255–2272.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and M. Ghil, 1989: Singular spectrum analysis in non-linear dynamics with applications to paleoclimatic time series. Physica D, 35, 395–424.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316–4340.

  • Vecchi, G. A., A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76.

    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, and S.-K. Lee, 2013: Response of freshwater flux and sea surface salinity to variability of the Atlantic warm pool. J. Climate, 26, 1249–1267.

    • Search Google Scholar
    • Export Citation
  • Wang, J. X. L., and D. J. Gaffen, 2001: Late-twentieth-century climatology and trends of surface humidity and temperature in China. J. Climate, 14, 2833–2845.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res., 102, 8703–8718, doi:10.1029/96JC01751.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and M. Schabel, 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403, 414–416.

  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233–235.

    • Search Google Scholar
    • Export Citation
  • Willett, K. M., N. P. Gillett, P. D. Jones, and P. W. Thorne, 2007: Attribution of observed surface humidity changes to human influence. Nature, 449, 710–712.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161–166.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., M. Ting, R. Seager, H. Huang, and M. Cane, 2011: Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Climate Dyn., 37, 53–72, doi:10.1007/s00382-010-0776-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Wang, 2012: Remote influences on freshwater flux variability in the Atlantic warm pool region. Geophys. Res. Lett., 39, L19714, doi:10.1029/2012GL053530.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 1853–1860.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461–465.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1561 786 50
PDF Downloads 554 77 13