Northern High-Latitude Heat Budget Decomposition and Transient Warming

Maria A. A. Rugenstein Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands

Search for other papers by Maria A. A. Rugenstein in
Current site
Google Scholar
PubMed
Close
,
Michael Winton NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Michael Winton in
Current site
Google Scholar
PubMed
Close
,
Ronald J. Stouffer NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Ronald J. Stouffer in
Current site
Google Scholar
PubMed
Close
,
Stephen M. Griffies NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Stephen M. Griffies in
Current site
Google Scholar
PubMed
Close
, and
Robert Hallberg NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Robert Hallberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate models simulate a wide range of climate changes at high northern latitudes in response to increased CO2. They also have substantial disagreement on projected changes of the Atlantic meridional overturning circulation (AMOC). Here, two pairs of closely related climate models are used, with each containing members with large and small AMOC declines to explore the influence of AMOC decline on the high-latitude response to increased CO2. The models with larger AMOC decline have less high-latitude warming and sea ice decline than their small AMOC decline counterpart. By examining differences in the perturbation heat budget of the 40°–90°N region, it is shown that AMOC decline diminishes the warming by weakening poleward ocean heat transport and increasing the ocean heat uptake. The cooling impact of this AMOC-forced surface heat flux perturbation difference is enhanced by shortwave feedback and diminished by longwave feedback and atmospheric heat transport differences. The magnitude of the AMOC decline within model pairs is positively related to the magnitudes of control climate AMOC and Labrador and Nordic Seas convection. Because the 40°–90°N region accounts for up to 40% of the simulated global ocean heat uptake over 100 yr, the process described here influences the global heat uptake efficiency.

Corresponding author address: Dr. Michael Winton, NOAA/GFDL, Princeton University Forrestal Campus, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: michael.winton@noaa.gov

Abstract

Climate models simulate a wide range of climate changes at high northern latitudes in response to increased CO2. They also have substantial disagreement on projected changes of the Atlantic meridional overturning circulation (AMOC). Here, two pairs of closely related climate models are used, with each containing members with large and small AMOC declines to explore the influence of AMOC decline on the high-latitude response to increased CO2. The models with larger AMOC decline have less high-latitude warming and sea ice decline than their small AMOC decline counterpart. By examining differences in the perturbation heat budget of the 40°–90°N region, it is shown that AMOC decline diminishes the warming by weakening poleward ocean heat transport and increasing the ocean heat uptake. The cooling impact of this AMOC-forced surface heat flux perturbation difference is enhanced by shortwave feedback and diminished by longwave feedback and atmospheric heat transport differences. The magnitude of the AMOC decline within model pairs is positively related to the magnitudes of control climate AMOC and Labrador and Nordic Seas convection. Because the 40°–90°N region accounts for up to 40% of the simulated global ocean heat uptake over 100 yr, the process described here influences the global heat uptake efficiency.

Corresponding author address: Dr. Michael Winton, NOAA/GFDL, Princeton University Forrestal Campus, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: michael.winton@noaa.gov
Save
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2/LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Banks, H. T., and J. M. Gregory, 2006: Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake. Geophys. Res. Lett., 33, L07608, doi:10.1029/2005GL025352.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., P. R. Gent, R. A. Woodgate, M. M. Holland, and R. Lindsay, 2006: The influence of sea ice on ocean heat uptake in response to increasing CO2. J. Climate, 19, 24372450.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., S. Manabe, and M. J. Spelman, 1988: Interhemispheric Asymmetry in the transient response of a coupled ocean–atmosphere model to CO2 forcing. J. Phys. Oceanogr., 18, 851867.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and Coauthors, 2004: Sea-ice and its response to CO2 forcing as simulated by global climate models. Climate Dyn., 23, 229241, doi:10.1007/s00382-004-0436-7.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643.

  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, doi:10.1007/s003820000059.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and J. F. B. Mitchell, 1997: The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment. Geophys. Res. Lett., 24, 19431946.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and P. M. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113, D23105, doi:10.1029/2008JD010405.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32, L12703, doi:10.1029/2005GL023209.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579.

  • Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17, 15501568.

  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Holland, M., and C. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232.

  • Jourdain, N. C., B. Barnier, J. Molines, J. Chanut, N. Ferry, G. Garric, and L. Parent, 2010: Deep convection in the Labrador Sea, as captured by a global ocean reanalysis and regional downscaling. Extended Abstracts, Fall Meeting, San Francisco, CA, Amer. Geophys. Union, OS54B-07.

  • Knutti, R., and L. Tomassini, 2008: Constraints on the transient climate response from observed global temperature and ocean heat uptake. Geophys. Res. Lett., 35, L09701, doi:10.1029/2007GL032904.

    • Search Google Scholar
    • Export Citation
  • Levermann, A., J. Mignot, S. Nawrath, and S. Rahmstorf, 2007: The role of northern sea ice cover for the weakening of the thermohaline circulation under global warming. J. Climate, 20, 41604171.

    • Search Google Scholar
    • Export Citation
  • Lin, S. J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Lu, J., and M. Cai, 2009: Seasonality of polar surface warming amplification in climate simulations. Geophys. Res. Lett., 36, L16704, doi:10.1029/2009GL040133.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., and R. Knutti, 2011: Ocean heat transport as a cause for model uncertainty in projected Arctic warming. J. Climate, 24, 14511460.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1979: A CO2-climate sensitivity study with a mathematical model of the global climate. Nature, 282, 491493.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean atmosphere model to gradual changes of atmospheric CO2. Part I. Annual mean response. J. Climate, 4, 785818.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2006: Past and future polar amplification of climate change: Climate model intercomparisons and ice-core constraints. Climate Dyn., 26, 513529, doi:10.1007/s00382-005-0081-9.

    • Search Google Scholar
    • Export Citation
  • Mayer, M., and L. Haimberger, 2011: Poleward atmospheric energy transports and their variability as evaluated from ECMWF reanalysis data. J. Climate, 25, 734752.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The Coupled Model Intercomparison Project (CMIP). Bull. Amer. Meteor. Soc., 81, 313318.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

  • Peixoto, J., and A. Oort, Eds., 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 22072227.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., L. Stramma, B. S. Giese, and R. Zantopp, 2009: Labrador Sea convection and subpolar North Atlantic Deep Water export in the SODA assimilation model. Deep-Sea Res. I, 56, 926938, doi:10.1016/j.dsr.2009.01.001.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006a: GFDL’s CM2 global coupled climate models. Part IV: Idealized climate response. J. Climate, 19, 723740.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., J. Russel, and M. J. Spelman, 2006b: Importance of oceanic heat uptake in transient climate change. Geophys. Res. Lett., 33, L17704, doi:10.1029/2006GL027242.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443.

  • Trenberth, K. E., and D. P. Stepaniak, 2004: The flow of energy through the earth’s climate system. Quart. J. Roy. Meteor. Soc., 130, 26772701.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., E. Michael, M. Kienast, and O. A. Saenko, 2007: Response of the Atlantic meridional overturning circulation to increasing atmospheric CO2: Sensitivity to mean climate state. Geophys. Res. Lett., 34, L05708, doi:10.1029/2006GL028756.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2006: Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett., 33, L03701, doi:10.1029/2005GL025244.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2008: Sea ice–albedo feedback and nonlinear Arctic climate change. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 111–131.

  • Winton, M., 2011: Do climate models underestimate the sensitivity of Northern Hemisphere sea ice cover? J. Climate, 24, 39243934.

  • Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722.

    • Search Google Scholar
    • Export Citation
  • Wood, R. A., A. B. Keen, J. F. B. Mitchell, and J. M. Gregory, 1999: Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature, 399, 572575.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and G. Vallis, 2012: The passive and active nature of ocean heat uptake in idealized climate change experiments. Climate Dyn., 38, 667684, doi:10.1007/s00382-011-1063-8.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2011: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1351 491 120
PDF Downloads 517 158 7