Pycnocline Variations in the Eastern Tropical and North Pacific, 1958–2008

Paul C. Fiedler Protected Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California

Search for other papers by Paul C. Fiedler in
Current site
Google Scholar
PubMed
Close
,
Roy Mendelssohn Environmental Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Pacific Grove, California

Search for other papers by Roy Mendelssohn in
Current site
Google Scholar
PubMed
Close
,
Daniel M. Palacios Environmental Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Pacific Grove, California, and Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Daniel M. Palacios in
Current site
Google Scholar
PubMed
Close
, and
Steven J. Bograd Environmental Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Pacific Grove, California

Search for other papers by Steven J. Bograd in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climatic variability of the pycnocline in the eastern tropical and North Pacific has oceanographic and ecological implications. Gridded monthly profiles of temperature and salinity from the Simple Ocean Data Assimilation (SODA) reanalysis, 1958–2008, were used to derive estimates of four variables related to the density structure of the upper-ocean water column: surface temperature, pycnocline depth, mixed layer depth, and stratification (potential energy anomaly). The pycnocline is primarily a thermal gradient in this region, except in subarctic waters at the northern extreme of the study area, where salinity becomes more important than temperature in determining stratification. Spatial patterns of mean and standard deviation of the four pycnocline variables are presented. Partitioning of variance between seasonal and interannual scales shows the predominance of interannual variability in the tropics and seasonal variability at higher latitudes. Low-frequency variations (trends) in the pycnocline variables were derived by state-space analysis of time series averaged in 5° squares. Regionally coherent trends were either monotonic over 50 years or had decadal-scale changes in sign (±5–10-m depth, ±5%–10% of stratification). For example, in the eastern equatorial Pacific, the pycnocline shoaled by 10 m and weakened by 5% over the 50 years, while in the California Current the pycnocline deepened by ~5 m but showed little net change in stratification, which weakened by 5% to the mid-1970s, strengthened by 8% to the mid-1990s, and then weakened by 4% to 2008. These observed changes in the pycnocline, and future changes resulting from global climate change, may have important biological and ecosystem effects.

Corresponding author address: Paul Fiedler, NOAA/NMFS/SWFSC, 8901 La Jolla Shores Dr., La Jolla, CA 92037. E-mail: paul.fiedler@noaa.gov

Abstract

Climatic variability of the pycnocline in the eastern tropical and North Pacific has oceanographic and ecological implications. Gridded monthly profiles of temperature and salinity from the Simple Ocean Data Assimilation (SODA) reanalysis, 1958–2008, were used to derive estimates of four variables related to the density structure of the upper-ocean water column: surface temperature, pycnocline depth, mixed layer depth, and stratification (potential energy anomaly). The pycnocline is primarily a thermal gradient in this region, except in subarctic waters at the northern extreme of the study area, where salinity becomes more important than temperature in determining stratification. Spatial patterns of mean and standard deviation of the four pycnocline variables are presented. Partitioning of variance between seasonal and interannual scales shows the predominance of interannual variability in the tropics and seasonal variability at higher latitudes. Low-frequency variations (trends) in the pycnocline variables were derived by state-space analysis of time series averaged in 5° squares. Regionally coherent trends were either monotonic over 50 years or had decadal-scale changes in sign (±5–10-m depth, ±5%–10% of stratification). For example, in the eastern equatorial Pacific, the pycnocline shoaled by 10 m and weakened by 5% over the 50 years, while in the California Current the pycnocline deepened by ~5 m but showed little net change in stratification, which weakened by 5% to the mid-1970s, strengthened by 8% to the mid-1990s, and then weakened by 4% to 2008. These observed changes in the pycnocline, and future changes resulting from global climate change, may have important biological and ecosystem effects.

Corresponding author address: Paul Fiedler, NOAA/NMFS/SWFSC, 8901 La Jolla Shores Dr., La Jolla, CA 92037. E-mail: paul.fiedler@noaa.gov
Save
  • Amador, J. A., E. J. Alfaro, O. G. Lizano, and V. O. Magaña, 2006: Atmospheric forcing of the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 101142.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., W.-L. Chan, T. Motoi, and T. Yamagata, 2004: Decadal variability of the Indian Ocean dipole. Geophys. Res. Lett., 31, L24207, doi:10.1029/2004GL021345.

    • Search Google Scholar
    • Export Citation
  • Behrenfeld, M. J., 2010: Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecology, 91, 977989.

  • Bjorkstedt, E., and Coauthors, 2010: State of the California Current 2009–2010. Calif. Coop. Oceanic Fish., 51, 3970.

  • Brander, K., 2010: Impacts of climate change on fisheries. J. Mar. Syst., 79, 389402.

  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, and X. H. Cao, 2000: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30, 311326.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., P. A. Bernal, and J. A. McGowan, 1982: Large-scale interannual physical and biological interaction in the California Current. J. Mar. Res., 40, 10951125.

    • Search Google Scholar
    • Export Citation
  • Commandeur, J. J. F., and S. J. Koopman, 2007: State Space Time Series Analysis. Oxford University Press, 174 pp.

  • Commandeur, J. J. F., S. J. Koopman, and M. Ooms, 2011: Statistical software for state space methods. J. Stat. Software, 41, 118.

  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, doi:10.1029/2007GL032838.

    • Search Google Scholar
    • Export Citation
  • Drinkwater, K. F., and Coauthors, 2010: On the processes linking climate to ecosystem changes. J. Mar. Syst., 79, 374388.

  • Durand, M.-H., and R. Mendelssohn, 1998: How to detect a change both on global and local scale in oceanographic time series. Global versus Local Changes in Upwelling Systems, M.-H. Durand et al., Eds., ORSTOM, 45–78.

  • Durbin, J., and S. J. Koopman, 2001: Time Series Analysis by State-Space Methods. Oxford University Press, 253 pp.

  • Enfield, D. B., and A. M. Mestas-Nuñez, 2000: Global modes of ENSO and non-ENSO sea surface temperature variability and their associations with climate. El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 89–112.

  • Fiedler, P. C., 2002a: The annual cycle and biological effects of the Costa Rica Dome. Deep-Sea Res. I, 49, 321338.

  • Fiedler, P. C., 2002b: Environmental change in the eastern tropical Pacific Ocean: Review of ENSO and decadal variability. Mar. Ecol. Prog. Ser., 244, 265283.

    • Search Google Scholar
    • Export Citation
  • Fiedler, P. C., 2010: Comparison of objective descriptions of the thermocline. Limnol. Oceanogr. Methods, 8, 313325.

  • Fiedler, P. C., and L. D. Talley, 2006: Hydrography of the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 143180.

  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079.

  • Henson, S. A., J. L. Sarmiento, J. P. Dunne, L. Bopp, I. Lima, S. C. Doney, J. John, and C. Beaulieu, 2010: Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621640.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105, 16 80316 821.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2006: The circulation of the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 181217.

  • Kim, H.-J., and A. J. Miller, 2007: Did the thermocline deepen in the California Current after the 1976/77 climate regime shift? J. Phys. Oceanogr., 37, 17331739.

    • Search Google Scholar
    • Export Citation
  • King, J. R., and Coauthors, 2011: Climate forcing and the California Current ecosystem. ICES J. Mar. Sci., 68, 11991216.

  • Lavaniegos, B. E., and M. D. Ohman, 2007: Coherence of long-term variations of zooplankton in two sectors of the California Current System. Prog. Oceanogr., 75, 4269.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., O. Aumont, P. Monfray, and J. Orr, 2003: Propagation of climatic events on ocean stratification, marine biology, and CO2: Case studies over the 1979–1999 period. J. Geophys. Res., 108, 3375, doi:10.1029/2001JC000920.

    • Search Google Scholar
    • Export Citation
  • Longhurst, A. R., 2007: Ecological Geography of the Sea. 2nd ed. Academic Press, 542 pp.

  • Lozier, M. S., A. C. Dave, J. B. Palter, L. M. Gerber, and R. T. Barber, 2011: On the relationship between stratification and primary productivity in the North Atlantic. Geophys. Res. Lett., 38, L18609, doi:10.1029/2011GL049414.

    • Search Google Scholar
    • Export Citation
  • Macias, D., M. R. Landry, A. Gershunov, A. J. Miller, and P. J. S. Franks, 2012: Climatic control of upwelling variability along the western North American coast. PLoS ONE, 7, e30436, doi:10.1371/journal.pone.0030436.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544.

  • McGowan, J. A., S. J. Bograd, R. J. Lynn, and A. J. Miller, 2003: The biological response to the 1977 regime shift in the California Current. Deep-Sea Res. II, 50, 25672582.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 17401745.

  • Mendelssohn, R., and F. B. Schwing, 2002: Common and uncommon trends in SST and wind stress in the California and Peru–Chile current systems. Prog. Oceanogr., 53, 141162.

    • Search Google Scholar
    • Export Citation
  • Mendelssohn, R., F. B. Schwing, and S. J. Bograd, 2003: Spatial structure of subsurface temperature variability in the California Current, 1950–1993. J. Geophys. Res., 108, 3093, doi:10.1029/2002JC001568.

    • Search Google Scholar
    • Export Citation
  • Mendelssohn, R., S. J. Bograd, F. B. Schwing, and D. M. Palacios, 2005: Teaching old indices new tricks: A state-space analysis of El Niño related climate indices. Geophys. Res. Lett., 32, L07709, doi:10.1029/2005GL022350.

    • Search Google Scholar
    • Export Citation
  • Messié, M., and F. Chavez, 2011: Global modes of sea surface temperature variability in relation to regional climate indices. J. Climate, 24, 43144331.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., W. B. White, and D. R. Cayan, 1997: North Pacific thermocline variations on ENSO timescales. J. Phys. Oceanogr., 27, 20232039.

    • Search Google Scholar
    • Export Citation
  • Moon, B.-K., S.-W. Yeh, B. Dewitte, J.-G. Jhun, I.-S. Kang, and B.P. Kirtman, 2004: Vertical structure variability in the equatorial Pacific before and after the Pacific climate shift of the 1970s. Geophys. Res. Lett., 31, L03203, doi:10.1029/2003GL018829.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. Alheit, A. Bakun, J. W. Hurrell, D. L. Mackas, and A. J. Miller, 2010: Climate controls on marine ecosystems and fish populations. J. Mar. Syst., 79, 305315.

    • Search Google Scholar
    • Export Citation
  • Palacios, D. M., S. J. Bograd, R. Mendelssohn, and F. B. Schwing, 2004: Long-term and seasonal trends in stratification in the California Current, 1950–1993. J. Geophys. Res., 109, C10016, doi:10.1029/2004JC002380.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., and A. Federov, 2003: Is El Niño sporadic or cyclic? Annu. Rev. Earth Planet. Sci., 31, 579594.

  • Pörtner, H. O., and M. A. Peck, 2010: Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J. Fish Biol., 77, 17451779.

    • Search Google Scholar
    • Export Citation
  • Rice, J., 2001: Implications of variability on many time scales for scientific advice on sustainable management of living marine resources. Prog. Oceanogr., 49, 189209.

    • Search Google Scholar
    • Export Citation
  • Roden, G. I., 1971: Aspects of the transition zone in the northeastern Pacific. J. Geophys. Res., 76, 34623475.

  • Sarmiento, J. L., and Coauthors, 2004: Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles, 18, GB3003, doi:10.1029/2003GB002134.

    • Search Google Scholar
    • Export Citation
  • Schwing, F. B., and R. Mendelssohn, 1997: Increased coastal upwelling in the California Current System. J. Geophys. Res., 102, 34213438.

    • Search Google Scholar
    • Export Citation
  • Shi, G., J. Ribbe, W. Cai, and T. Cowan, 2007: Multidecadal variability in the transmission of ENSO signals to the Indian Ocean. Geophys. Res. Lett., 34, L09706, doi:10.1029/2007GL029528.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., 1981: The shelf-sea fronts: Implications of their existence and behaviour. Philos. Trans. Roy. Soc. London, 302A, 531546.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Sprintall, J., and M. F. Cronin, 2001: Upper ocean vertical structure. Encyclopedia of Ocean Sciences, J. H. Steele, S. Thorpe, and K. Turekian, Eds., Academic Press, 3120–3128.

  • Sverdrup, H. U., 1953: On conditions for the vernal blooming of phytoplankton. J. Cons. Int. Explor. Mer, 18, 287295.

  • Tomczak, M., 2001: Upper ocean mean horizontal structure. Encyclopedia of Ocean Sciences, J. H. Steele, S. A. Thorpe, and K. K. Turekian, Eds., Academic Press, 3083–3093.

  • Wang, C., and P. C. Fiedler, 2006: ENSO variability in the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 239266.

  • Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res., 90, 71297132.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1249 258 22
PDF Downloads 743 146 10