The Circulation Response to Idealized Changes in Stratospheric Water Vapor

Amanda C. Maycock Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Amanda C. Maycock in
Current site
Google Scholar
PubMed
Close
,
Manoj M. Joshi National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom

Search for other papers by Manoj M. Joshi in
Current site
Google Scholar
PubMed
Close
,
Keith P. Shine Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Keith P. Shine in
Current site
Google Scholar
PubMed
Close
, and
Adam A. Scaife Met Office Hadley Centre, Met Office, Exeter, United Kingdom

Search for other papers by Adam A. Scaife in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations show that stratospheric water vapor (SWV) concentrations increased by ~30% between 1980 and 2000. SWV has also been projected to increase by up to a factor of 2 over the twenty-first century. Trends in SWV impact stratospheric temperatures, which may lead to changes in the stratospheric circulation. Perturbations in temperature and wind in the stratosphere have been shown to influence the extratropical tropospheric circulation. This study investigates the response to a uniform doubling in SWV from 3 to 6 ppmv in a comprehensive stratosphere-resolving atmospheric GCM. The increase in SWV causes stratospheric cooling with a maximum amplitude of 5–6 K in the polar lower stratosphere and 2–3 K in the tropical lower stratosphere. The zonal wind on the upper flanks of the subtropical jets is more westerly by up to ~5 m s−1. Changes in resolved wave drag in the stratosphere result in an increase in the strength of tropical upwelling associated with the Brewer–Dobson circulation of ~10% throughout the year. In the troposphere, the increase in SWV causes significant meridional dipole changes in the midlatitude zonal-mean zonal wind of up to 2.8 m s−1 at 850 hPa, which are largest in boreal winter in both hemispheres. This suggests a more poleward storm track under uniformly increased stratospheric water vapor. The circulation changes in both the stratosphere and troposphere are almost entirely due to the increase in SWV at pressures greater than 50 hPa. The results show that long-term trends in SWV may impact stratospheric temperatures and wind, the strength of the Brewer–Dobson circulation, and extratropical surface climate.

Corresponding author address: A. C. Maycock, Department of Meteorology, P.O. Box 243, University of Reading, Reading RG6 6BB, United Kingdom. E-mail: a.c.maycock@reading.ac.uk

Abstract

Observations show that stratospheric water vapor (SWV) concentrations increased by ~30% between 1980 and 2000. SWV has also been projected to increase by up to a factor of 2 over the twenty-first century. Trends in SWV impact stratospheric temperatures, which may lead to changes in the stratospheric circulation. Perturbations in temperature and wind in the stratosphere have been shown to influence the extratropical tropospheric circulation. This study investigates the response to a uniform doubling in SWV from 3 to 6 ppmv in a comprehensive stratosphere-resolving atmospheric GCM. The increase in SWV causes stratospheric cooling with a maximum amplitude of 5–6 K in the polar lower stratosphere and 2–3 K in the tropical lower stratosphere. The zonal wind on the upper flanks of the subtropical jets is more westerly by up to ~5 m s−1. Changes in resolved wave drag in the stratosphere result in an increase in the strength of tropical upwelling associated with the Brewer–Dobson circulation of ~10% throughout the year. In the troposphere, the increase in SWV causes significant meridional dipole changes in the midlatitude zonal-mean zonal wind of up to 2.8 m s−1 at 850 hPa, which are largest in boreal winter in both hemispheres. This suggests a more poleward storm track under uniformly increased stratospheric water vapor. The circulation changes in both the stratosphere and troposphere are almost entirely due to the increase in SWV at pressures greater than 50 hPa. The results show that long-term trends in SWV may impact stratospheric temperatures and wind, the strength of the Brewer–Dobson circulation, and extratropical surface climate.

Corresponding author address: A. C. Maycock, Department of Meteorology, P.O. Box 243, University of Reading, Reading RG6 6BB, United Kingdom. E-mail: a.c.maycock@reading.ac.uk
Save
  • Ackerley, D., M. Joshi, E. Highwood, C. Ryder, M. Harrison, D. Walter, S. Milton, and J. Strachan, 2012: A comparison of two dust uplift schemes within the same general circulation model. Adv. Meteor., 2012, 260515, doi:10.1155/2012/260515.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. 1st ed. Academic Press, 489 pp.

  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2010: Dynamical feedbacks of the southern annular mode in winter and summer. J. Atmos. Sci., 67, 23202330.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799802.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727741.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2010a: Stratospheric dynamics. SPARC report on the evaluation of chemistry–climate models, SPARC Rep. 5, WCRP-132,WMO/TD 1526, 109–148.

  • Butchart, N., and Coauthors, 2010b: Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 53495374.

    • Search Google Scholar
    • Export Citation
  • Butler, A., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496.

    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., and E. Manzini, 2009: Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Climate, 22, 12231238.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469; Corrigendum, 24, 5951.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109.

    • Search Google Scholar
    • Export Citation
  • Considine, D. B., J. E. Rosenfield, and E. L. Fleming, 2001: An interactive model study of the influence of the Mount Pinatubo aerosol on stratospheric methane and water trends. J. Geophys. Res., 106, 27 71127 727.

    • Search Google Scholar
    • Export Citation
  • Cusack, S., J. M. Edwards, and M. J. Crowther, 1999: Investigating k distribution methods for parameterizing gaseous absorption in the Hadley Centre climate model. J. Geophys. Res., 104, 20512057.

    • Search Google Scholar
    • Export Citation
  • Dall’Amico, M., P. A. Stott, A. A. Scaife, L. J. Gray, K. H. Rosenlof, and A. Y. Karpechko, 2010: Impact of stratospheric variability on tropospheric climate change. Climate Dyn., 34, 399417.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161023.

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352.

  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair, 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37, 22652297.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26, 33093312.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 2002: Assessing the climate impacts of trends in stratospheric water vapour. Geophys. Res. Lett., 29, 1086, doi:10.1029/2001GL013909.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and Coauthors, 2012: Assessing and understanding the impact of stratospheric dynamics and variability on the Earth system. Bull. Amer. Meteor. Soc., 93, 845859.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2010: Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends. J. Geophys. Res., 115, D00M08, doi:10.1029/2009JD013638.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 2000: The North Atlantic Oscillation. Stochastic Environ. Res. Risk Assess., 14, 213242.

  • Haigh, J. D., M. Blackburn, and R. Day, 2005: The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J. Climate, 18, 36723685.

    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., N. Butchart, S. M. Osprey, L. J. Gray, A. C. Bushell, and T. J. Hinton, 2010: The climatology of the middle atmosphere in a vertically extended version of the Met Office’s climate model. Part I: Mean state. J. Atmos. Sci., 67, 15091525.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the downward control of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651680.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129.

  • Hurst, D. F., S. J. Oltmans, H. Vömel, K. H. Rosenlof, S. M. Davis, E. A. Ray, E. G. Hall, and A. F. Jordan, 2011: Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30-year Boulder record. J. Geophys. Res., 116, D02306, doi:10.1029/2010JD015065.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236.

  • Joshi, M. M., and K. P. Shine, 2003: A GCM study of volcanic eruptions as a cause of increased stratospheric water vapor. J. Climate, 16, 35253534.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., A. J. Charlton, and A. A. Scaife, 2006: On the influence of stratospheric water vapor changes on the tropospheric circulation. Geophys. Res. Lett., 33, L09806, doi:10.1029/2006GL025983.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639.

    • Search Google Scholar
    • Export Citation
  • Li, F., J. Austin, and J. Wilson, 2008: The strength of the Brewer–Dobson circulation in a changing climate: Coupled chemistry climate model simulations. J. Climate, 21, 4057.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern hemisphere. J. Atmos. Sci., 58, 33123327.

  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • MacKenzie, I. A., and R. S. Harwood, 2004: Middle-atmosphere response to future increase in humidity arising from increased methane abundance. J. Geophys. Res., 109, D02107, doi:10.1029/2003JD003590.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21, 18631898.

    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., and K. P. Shine, 2012: Stratospheric water vapor and climate: Sensitivity to the representation in radiation codes. J. Geophys. Res., 117, D13102, doi:10.1029/2012JD017484.

    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., K. P. Shine, and M. M. Joshi, 2011: The temperature response to stratospheric water vapour changes. Quart. J. Roy. Meteor. Soc., 137, 10701082.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J. Climate, 22, 15161540.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, J. F. Scinocca, D. A. Plummer, M. Sigmond, A. I. R. Jonsson, and M. C. Reader, 2011: Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Climate, 24, 18501868.

    • Search Google Scholar
    • Export Citation
  • Oinas, V., A. A. Lacis, D. Rind, D. T. Shindell, and J. E. Hansen, 2001: Radiative cooling by stratospheric water vapor: Big differences in GCM results. Geophys. Res. Lett., 28, 27912794.

    • Search Google Scholar
    • Export Citation
  • Oman, L., D. W. Waugh, S. Pawson, R. S. Stolarski, and J. E. Nielsen, 2008: Understanding the changes in stratospheric water vapor in coupled chemistry–climate model simulations. J. Atmos. Sci., 65, 32783291.

    • Search Google Scholar
    • Export Citation
  • Osprey, S. M., L. J. Gray, S. C. Hardiman, N. Butchart, A. C. Bushell, and T. J. Hinton, 2010: The climatology of the middle atmosphere in a vertically extended version of the Met Office’s climate model. Part II: Variability. J. Atmos. Sci., 67, 36373651.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793809.

  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S. W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, J. M. Russell, A. Roche, and J. W. Waters, 1998: Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data. J. Atmos. Sci., 55, 163185.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, H. Vömel, G. E. Nedoluha, and P. M. Forster, 2006: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer–Dobson circulation. J. Geophys. Res., 111, D12312, doi:10.1029/2005JD006744.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rind, D., and P. Lonergan, 1995: Modeled impacts of stratospheric ozone and water vapor perturbations with implications for high-speed civil transport aircraft. J. Geophys. Res., 100, 73817396.

    • Search Google Scholar
    • Export Citation
  • Rohs, S., and Coauthors, 2006: Long-term changes of methane and hydrogen in the stratosphere in the period 1978–2003 and their impact on the abundance of stratospheric water vapor. J. Geophys. Res.,111, D14315, doi:10.1029/2005JD006877.

  • Rosenlof, K. H., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100, 51735191.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., and G. C. Reid, 2008: Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection. J. Geophys. Res.,113, D06107, doi:10.1029/2007JD009109.

  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett.,32, L18715, doi:10.1029/2005GL023226.

  • Scaife, A. A., and Coauthors, 2012: Climate change and stratosphere–troposphere interaction. Climate Dyn., 38, 20892097, doi:10.1007/s00382-011-1080-7.

    • Search Google Scholar
    • Export Citation
  • Scherer, M., H. Vömel, S. Fueglistaler, S. J. Oltmans, and J. Stähelin, 2008:Trends and variability of midlatitude stratospheric water vapour deduced from the re-evaluated boulder balloon series and HALOE. Atmos. Chem. Phys., 8, 13911402.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784797.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., M. Blackburn, and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66, 13471365.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., P. Hitchcock, T. G. Shepherd, and J. F. Scinocca, 2011: Stratospheric variability and tropospheric annular mode timescales. Geophys. Res. Lett.,38, L20806, doi:10.1029/2011GL049304.

  • Smith, C. A., J. D. Haigh, and R. Toumi, 2001: Radiative forcing due to trends in stratospheric water vapour. Geophys. Res. Lett., 28, 179182.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Solomon, S., K. H. Rosenlof, R. Portmann, J. Daniel, S. Davis, T. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor changes to decadal variation in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Son, S. W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489.

    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., L. M. Polvani, and S. M. Davies, 2011: The response of the tropospheric circulation to water vapor–like forcing in the stratosphere. J. Climate, 24, 57135720.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier, 648 pp.

  • WMO, 1957: Definition of the tropopause. WMO Bull.,6, 136.

  • Wu, Y., R. Seager, M. Ting, N. Naik, and T. A. Shaw, 2011: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part I: Model experiments and transient thermal response in the troposphere. J. Climate, 25, 28622879.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 937 349 16
PDF Downloads 413 128 3