Comparisons of Clear-Sky Outgoing Far-IR Flux Inferred from Satellite Observations and Computed from the Three Most Recent Reanalysis Products

Xiuhong Chen Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan, and Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China

Search for other papers by Xiuhong Chen in
Current site
Google Scholar
PubMed
Close
,
Xianglei Huang Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Xianglei Huang in
Current site
Google Scholar
PubMed
Close
,
Norman G. Loeb Climate and Radiation Branch, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Norman G. Loeb in
Current site
Google Scholar
PubMed
Close
, and
Heli Wei Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China,

Search for other papers by Heli Wei in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The far-IR spectrum plays an important role in the earth’s radiation budget and remote sensing. The authors compare the near-global (80°S–80°N) outgoing clear-sky far-IR flux inferred from the collocated Atmospheric Infrared Sounder (AIRS) and Clouds and the Earth’s Radiant Energy System (CERES) observations in 2004 with the counterparts computed from reanalysis datasets subsampled along the same satellite trajectories. The three most recent reanalyses are examined: the ECMWF Interim Re-Analysis (ERA-Interim), NASA Modern-Era Retrospective Analysis for Research and Application (MERRA), and NOAA/NCEP Climate Forecast System Reanalysis (CFSR). Following a previous study by X. Huang et al., clear-sky spectral angular distribution models (ADMs) are developed for five of the CERES land surface scene types as well as for the extratropical oceans. The outgoing longwave radiation (OLR) directly estimated from the AIRS radiances using the authors’ algorithm agrees well with the OLR in the collocated CERES Single Satellite Footprint (SSF) dataset. The daytime difference is 0.96 ±2.02 W m−2, and the nighttime difference is 0.86 ±1.61 W m−2. To a large extent, the far-IR flux derived in this way agrees with those directly computed from three reanalyses. The near-global averaged differences between reanalyses and observations tend to be slightly positive (0.66%–1.15%) over 0–400 cm−1 and slightly negative (−0.89% to −0.44%) over 400–600 cm−1. For all three reanalyses, the spatial distributions of such differences show the largest discrepancies over the high-elevation areas during the daytime but not during the nighttime, suggesting discrepancies in the diurnal variation of such areas among different datasets. The composite differences with respect to temperature or precipitable water suggest large discrepancies for cold and humid scenes.

Corresponding author address: Dr. Xiuhong Chen, 2455 Hayward Street, University of Michigan, Ann Arbor, MI 48109-2143. E-mail: xiuchen@umich.edu

Abstract

The far-IR spectrum plays an important role in the earth’s radiation budget and remote sensing. The authors compare the near-global (80°S–80°N) outgoing clear-sky far-IR flux inferred from the collocated Atmospheric Infrared Sounder (AIRS) and Clouds and the Earth’s Radiant Energy System (CERES) observations in 2004 with the counterparts computed from reanalysis datasets subsampled along the same satellite trajectories. The three most recent reanalyses are examined: the ECMWF Interim Re-Analysis (ERA-Interim), NASA Modern-Era Retrospective Analysis for Research and Application (MERRA), and NOAA/NCEP Climate Forecast System Reanalysis (CFSR). Following a previous study by X. Huang et al., clear-sky spectral angular distribution models (ADMs) are developed for five of the CERES land surface scene types as well as for the extratropical oceans. The outgoing longwave radiation (OLR) directly estimated from the AIRS radiances using the authors’ algorithm agrees well with the OLR in the collocated CERES Single Satellite Footprint (SSF) dataset. The daytime difference is 0.96 ±2.02 W m−2, and the nighttime difference is 0.86 ±1.61 W m−2. To a large extent, the far-IR flux derived in this way agrees with those directly computed from three reanalyses. The near-global averaged differences between reanalyses and observations tend to be slightly positive (0.66%–1.15%) over 0–400 cm−1 and slightly negative (−0.89% to −0.44%) over 400–600 cm−1. For all three reanalyses, the spatial distributions of such differences show the largest discrepancies over the high-elevation areas during the daytime but not during the nighttime, suggesting discrepancies in the diurnal variation of such areas among different datasets. The composite differences with respect to temperature or precipitable water suggest large discrepancies for cold and humid scenes.

Corresponding author address: Dr. Xiuhong Chen, 2455 Hayward Street, University of Michigan, Ann Arbor, MI 48109-2143. E-mail: xiuchen@umich.edu
Save
  • Ackerman, S. A., R. A. Frey, and W. L. Smith, 1992: Radiation budget studies using collocated observations from Advanced Very High-Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments. J. Geophys. Res., 97 (D11), 11 51311 525.

    • Search Google Scholar
    • Export Citation
  • Anderson, G. P., and Coauthors, 2007: Using the MODTRAN5 radiative transfer algorithm with NASA satellite data: AIRS and SORCE. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, S. S. Shen and P. E. Lewis, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6565), doi:10.1117/12.721184.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens.,41, 253–264, doi:10.1109/TGRS.2002.808356.

  • Baldridge, A. M., S. J. Hook, C. I. Grove, and G. Rivera, 2009: The ASTER Spectral Library version 2.0. Remote Sens. Environ., 113, 711715.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, S. Nasiri, A. K. Heidinger, A. Heymsfield, and J. Li, 2007: Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm−1. J. Appl. Meteor. Climatol., 46, 423434.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., and M. J. Iacono, 1995: Line-by-line calculations of atmospheric fluxes and cooling rates II: Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons. J. Geophys. Res., 100 (D8), 16 51916 535.

    • Search Google Scholar
    • Export Citation
  • Cox, C. V., J. E. Murray, J. P. Taylor, P. D. Green, J. C. Pickering, J. E. Harries, and A. E. Last, 2007: Clear-sky far-infrared measurements observed with TAFTS during the EAQUATE campaign, September 2004. Quart. J. Roy. Meteor. Soc., 133, 273283.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Esposito, F., and Coauthors, 2007: REFIR/BB initial observations in the water vapor rotational band: results from a field campaign. J. Quant. Spectrosc. Radiat. Transfer, 103, 524535.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., and Coauthors, 1999: ERA description. ECMWF ERA-15 Project Rep. 1, 84 pp.

  • Haggerty, J. A., and J. A. Curry, 2001: Variability of sea ice emissivity estimated from airborne passive microwave measurements during FIRE SHEBA. J. Geophys. Res., 106 (D14), 15 26515 277.

    • Search Google Scholar
    • Export Citation
  • Hanel, R. A., B. Schlachman, F. D. Clark, C. H. Prokesh, J. B. Taylor, W. M. Wilson, and L. Chaney, 1970: The Nimbus III Michelson interferometer. Appl. Opt., 9, 17671774.

    • Search Google Scholar
    • Export Citation
  • Hanel, R. A., B. Schlachman, D. Rogers, and D. Vanous, 1971: Nimbus 4 Michelson interferometer. Appl. Opt., 10, 13761382.

  • Harries, J., H. E. Brindley, P. J. Sagoo, and R. J. Bantges, 2001: Increase in greenhouse forcing inferred from the outgoing longwave radiation spectra of the earth in 1970 and 1977. Nature, 410, 355357.

    • Search Google Scholar
    • Export Citation
  • Harries, J., and Coauthors, 2008: The far-infrared Earth. Rev. Geophys., 46, RG4004, doi:10.1029/2007RG000233.

  • Huang, X., and Y. L. Yung, 2005: Spatial and spectral variability of the outgoing thermal IR spectra from AIRS: A case study of July 2003. J. Geophys. Res., 110, D12102, doi:10.1029/2004JD005530.

    • Search Google Scholar
    • Export Citation
  • Huang, X., J. Farrara, S. S. Leroy, Y. L. Yung, and R. M. Goody, 2002: Cloud variability as revealed in outgoing infrared spectra: Comparing model to observation with spectral EOF analysis. Geophys. Res. Lett., 29, 1270, doi:10.1029/2001GL014176.

    • Search Google Scholar
    • Export Citation
  • Huang, X., V. Ramaswamy, and M. D. Schwarzkopf, 2006: Quantification of the source of errors in AM2 simulated tropical clear-sky outgoing longwave radiation. J. Geophys. Res., 111, D14107, doi:10.1029/2005JD006576.

    • Search Google Scholar
    • Export Citation
  • Huang, X., W. Z. Yang, N. G. Loeb, and V. Ramaswamy, 2008: Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: Clear sky over the tropical oceans. J. Geophys. Res., 113, D09110, doi:10.1029/2007JD009219.

    • Search Google Scholar
    • Export Citation
  • Huang, X., N. G. Loeb, and W. Yang, 2010: Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: 2. Cloudy sky and band-by-band cloud radiative forcing over the tropical oceans. J. Geophys. Res., 115, D21101, doi:10.1029/2010JD013932.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, N. Manalo-Smith, and D. R. Doelling, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351.

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens., 21, 13031330.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, doi:10.1109/tgrs.2011.2144601.

    • Search Google Scholar
    • Export Citation
  • Mlynczak, M. G., D. G. Johnson, G. E. Bingham, K. W. Jucks, W. A. Traub, L. Gordley, and P. Yang, 2005: The far-infrared spectroscopy of the troposphere (FIRST) project. Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing, G. J. Komar, J. Wang, and T. Kimura, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5659), 81–87.

    • Search Google Scholar
    • Export Citation
  • Mlynczak, M. G., and Coauthors, 2006: First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument. Geophys. Res. Lett., 33, L07704, doi:10.1029/2005GL025114.

    • Search Google Scholar
    • Export Citation
  • Prabhakara, C., J.-M. Yoo, G. Dalu, and R. S. Fraser, 1990: Deep optically thin cirrus clouds in the polar regions. Part I: Infrared extinction characteristics. J. Appl. Meteor., 29, 13131329.

    • Search Google Scholar
    • Export Citation
  • Prabhakara, C., D. P. Kratz, J.-M. Yoo, G. Dalu, and A. Vernekar, 1993: Optically thin cirrus clouds: Radiative impact on the warm pool. J. Quant. Spectrosc. Radiat. Transfer, 49, 467483.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W. S. Wu, D. F. Parrish, and N. M. Roberts, 2003a: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W. S. Wu, D. F. Parrish, and N. M. Roberts, 2003b: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131, 15361548.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2009: The GEOS-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, 5.2.0. NASA GSFC Global Modeling and Data Assimilation Tech. Rep. 27, 118 pp.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Rizzi, R., and T. Maestri, 2003: Some considerations on the infrared cloud forcing. J. Geophys. Res., 108, 4403, doi:10.1029/2003JD003428.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Simmons, A. J., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Strow, L. L., S. E. Hannon, S. De-Souza Machado, H. E. Motteler, and D. C. Tobin, 2006: Validation of the Atmospheric Infrared Sounder radiative transfer algorithm. J. Geophys. Res.,111, D09S06, doi:10.1029/2005JD006146.

  • Turner, D. D., S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, 2003: Cloud phase determination using ground-based AERI observations at SHEBA. J. Appl. Meteor., 42, 701715.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Uppala, S. M., D. Dee, S. Kobayashi, P. Berrisford, and A. Simmons, 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 12–18.

  • Wang, W., P. Xie, S.-H. Yoo, Y. Xue, A. Kumar, and X. Wu, 2010: An assessment of the surface climate in the NCEP climate forecast system reanalysis. Climate Dyn., 37, 1601–1620, doi:10.1007/s00382-010-0935-7.

    • Search Google Scholar
    • Export Citation
  • Wark, D. Q., D. T. Hilleary, S. P. Anderson, and J. C. Fisher, 1970: Nimbus satellite infrared spectrometer experiment. IEEE Trans. Geosci. Electron.,8, 264–270.

  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744.

    • Search Google Scholar
    • Export Citation
  • WCRP Observation and Assimilation Panel, 2011: Report of WOAP workshop on evaluation of satellite-related global climate datasets. WCRP Informal Rep. 33/2011, 44 pp.

    • Search Google Scholar
    • Export Citation
  • Wilber, A. C., D. P. Kratz, and S. K. Gupta, 1999: Surface emissivity maps for use in satellite retrievals of longwave radiation. NASA Rep. NASA/TP-1999-209362, 35 pp.

  • Wu, W. S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and Coauthors, 2003: Spectral signature of ice clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study. J. Geophys. Res., 108, 4569, doi:10.1029/2002JD003291.

    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for non-spherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 55125523.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 343 185 14
PDF Downloads 132 52 0