A Predictable AMO-Like Pattern in the GFDL Fully Coupled Ensemble Initialization and Decadal Forecasting System

Xiaosong Yang * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Xiaosong Yang in
Current site
Google Scholar
PubMed
Close
,
Anthony Rosati * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Anthony Rosati in
Current site
Google Scholar
PubMed
Close
,
Shaoqing Zhang * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Shaoqing Zhang in
Current site
Google Scholar
PubMed
Close
,
Thomas L. Delworth * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Thomas L. Delworth in
Current site
Google Scholar
PubMed
Close
,
Rich G. Gudgel * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Rich G. Gudgel in
Current site
Google Scholar
PubMed
Close
,
Rong Zhang * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Rong Zhang in
Current site
Google Scholar
PubMed
Close
,
Gabriel Vecchi * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Gabriel Vecchi in
Current site
Google Scholar
PubMed
Close
,
Whit Anderson * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Whit Anderson in
Current site
Google Scholar
PubMed
Close
,
You-Soon Chang * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by You-Soon Chang in
Current site
Google Scholar
PubMed
Close
,
Timothy DelSole George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Timothy DelSole in
Current site
Google Scholar
PubMed
Close
,
Keith Dixon * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Keith Dixon in
Current site
Google Scholar
PubMed
Close
,
Rym Msadek * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Rym Msadek in
Current site
Google Scholar
PubMed
Close
,
William F. Stern * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by William F. Stern in
Current site
Google Scholar
PubMed
Close
,
Andrew Wittenberg * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Andrew Wittenberg in
Current site
Google Scholar
PubMed
Close
, and
Fanrong Zeng * NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Fanrong Zeng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The decadal predictability of sea surface temperature (SST) and 2-m air temperature (T2m) in the Geophysical Fluid Dynamics Laboratory (GFDL) decadal hindcasts, which are part of the Fifth Coupled Model Intercomparison Project experiments, has been investigated using an average predictability time (APT) analysis. Comparison of retrospective forecasts initialized using the GFDL Ensemble Coupled Data Assimilation system with uninitialized historical forcing simulations using the same model allows identification of the internal multidecadal pattern (IMP) for SST and T2m. The IMP of SST is characterized by an interhemisphere dipole, with warm anomalies centered in the North Atlantic subpolar gyre region and North Pacific subpolar gyre region, and cold anomalies centered in the Antarctic Circumpolar Current region. The IMP of T2m is characterized by a general bipolar seesaw, with warm anomalies centered in Greenland and cold anomalies centered in Antarctica. The retrospective prediction skill of the initialized system, verified against independent observational datasets, indicates that the IMP of SST may be predictable up to 4 (10) yr lead time at 95% (90%) significance level, and the IMP of T2m may be predictable up to 2 (10) yr at the 95% (90%) significance level. The initialization of multidecadal variations of northward oceanic heat transport in the North Atlantic significantly improves the predictive skill of the IMP. The dominant roles of oceanic internal dynamics in decadal prediction are further elucidated by fixed-forcing experiments in which radiative forcing is returned abruptly to 1961 values. These results point toward the possibility of meaningful decadal climate outlooks using dynamical coupled models if they are appropriately initialized from a sustained climate observing system.

Corresponding author address: Xiaosong Yang, NOAA/Geophysical Fluid Dynamics Laboratory, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: xiaosong.yang@noaa.gov

Abstract

The decadal predictability of sea surface temperature (SST) and 2-m air temperature (T2m) in the Geophysical Fluid Dynamics Laboratory (GFDL) decadal hindcasts, which are part of the Fifth Coupled Model Intercomparison Project experiments, has been investigated using an average predictability time (APT) analysis. Comparison of retrospective forecasts initialized using the GFDL Ensemble Coupled Data Assimilation system with uninitialized historical forcing simulations using the same model allows identification of the internal multidecadal pattern (IMP) for SST and T2m. The IMP of SST is characterized by an interhemisphere dipole, with warm anomalies centered in the North Atlantic subpolar gyre region and North Pacific subpolar gyre region, and cold anomalies centered in the Antarctic Circumpolar Current region. The IMP of T2m is characterized by a general bipolar seesaw, with warm anomalies centered in Greenland and cold anomalies centered in Antarctica. The retrospective prediction skill of the initialized system, verified against independent observational datasets, indicates that the IMP of SST may be predictable up to 4 (10) yr lead time at 95% (90%) significance level, and the IMP of T2m may be predictable up to 2 (10) yr at the 95% (90%) significance level. The initialization of multidecadal variations of northward oceanic heat transport in the North Atlantic significantly improves the predictive skill of the IMP. The dominant roles of oceanic internal dynamics in decadal prediction are further elucidated by fixed-forcing experiments in which radiative forcing is returned abruptly to 1961 values. These results point toward the possibility of meaningful decadal climate outlooks using dynamical coupled models if they are appropriately initialized from a sustained climate observing system.

Corresponding author address: Xiaosong Yang, NOAA/Geophysical Fluid Dynamics Laboratory, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: xiaosong.yang@noaa.gov
Save
  • Blunier, T., and E. J. Brook, 2001: Timing of millenial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109–112, doi:10.1126/science.291.5501.109.

    • Search Google Scholar
    • Export Citation
  • Blunier, T., and Coauthors, 1998: Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature, 394, 739–743, doi:10.1038/29447.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., H. Teng, G. A. Meehl, M. Kimoto, J. R. Knight, M. Latif, and A. Rosati, 2012: Systematic estimates of initial-value decadal predictability for six AOGCMs. J. Climate, 25, 1827–1846.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladè, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 1990–2009.

    • Search Google Scholar
    • Export Citation
  • Chang, Y.-S., S. Zhang, A. Rosati, T. L. Delworth, and W. F. Stern, 2012: An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Climate Dyn., doi:10.1007/s00382-012-1412-2, in press.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. K. Folland, G. Lesins, and M. K. Dubey, 2010: Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures. Geophys. Res. Lett., 37, L08703, doi:10.1029/2010GL042793.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2006: Interannual to decadal climate predictability in the North Atlantic: A multimodel-ensemble study. J. Climate, 19, 1195–1203.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28.

  • DelSole, T., and M. K. Tippett, 2009a: Average predictability time. Part I: Theory. J. Atmos. Sci., 66, 1172–1187.

  • DelSole, T., and M. K. Tippett, 2009b: Average predictability time. Part II: Seamless diagnosis of predictability on multiple time scales. J. Atmos. Sci., 66, 1188–1204.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., M. K. Tippett, and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909–926.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643–674.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 2077–2080.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602–607.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 2418–2417.

    • Search Google Scholar
    • Export Citation
  • Hermanson, L., and R. Sutton, 2010: Case studies in interannual to decadal climate predictability. Climate Dyn., 35, 1169–1189.

  • Jia, L., and T. DelSole, 2011: Diagnosis of multiyear predictability on continental scales. J. Climate, 24, 5108–5124.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 (C9), 18 567–18 589.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 84–88, doi:10.1038/nature06921.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–267.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2006: Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J. Climate, 19, 1624–1651.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141–157.

    • Search Google Scholar
    • Export Citation
  • Latif, M., C. Böning, J. Willebrand, A. Biastoch, J. Dengg, N. Keenlyside, U. Schweckendiek, and G. Madec, 2006a: Is the thermohaline circulation changing? J. Climate, 19, 4631–4637.

    • Search Google Scholar
    • Export Citation
  • Latif, M., M. Collins, H. Pohlmann, and N. Keenlyside, 2006b: A review of predictability studies of Atlantic sector climate on decadal time scales. J. Climate, 19, 5971–5987.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Zhang, T. L. Delworth, S. Zhang, A. Rosati, and Y.-S. Chang, 2011: Predicting Atlantic meridional overturning circulation (AMOC) variations using subsurface and surface fingerprints. Deep-Sea Res. II, 58, 1895–1903.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 1467–1485.

  • Msadek, R., K. W. Dixon, T. L. Delworth, and W. Hurlin, 2010: Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys. Res. Lett., 37, L19608, doi:10.1029/2010GL044517.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796–799, doi:10.1126/science.1139540.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 2466–2477.

  • Solomon, A., and Coauthors, 2011: Distinguishing the roles of natural and anthropogenically forced decadal climate variability. Bull. Amer. Meteor. Soc., 92, 141–156.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of the CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, doi:10.1029/2011GL048712.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Mon. Wea. Rev., 112, 2359–2368.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., F. J. Doblas-Reyes, B. Wouters, and W. Hazeleger, 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 1263–1280, doi:10.1007/s00382-012-1313-4.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759–773.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2007: Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophys. Res. Lett., 34, L12713, doi:10.1029/2007GL030225.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2008: Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20705, doi:10.1029/2008GL035463.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007GL031601.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and A. Rosati, 2010: An inflated ensemble filter for ocean data assimilation with a biased coupled GCM. Mon. Wea. Rev., 138, 3905–3931.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. T. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 3541–3564.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2921 956 96
PDF Downloads 307 102 11