Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part I: Model Evaluation and 1850–2005 Results

Miren Vizcaíno * Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands, and Department of Geography, University of California, Berkeley, Berkeley, California

Search for other papers by Miren Vizcaíno in
Current site
Google Scholar
PubMed
Close
,
William H. Lipscomb Group T-3, Fluid Dynamics and Solid Mechanics, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by William H. Lipscomb in
Current site
Google Scholar
PubMed
Close
,
William J. Sacks National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by William J. Sacks in
Current site
Google Scholar
PubMed
Close
,
Jan H. van Angelen ** Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands

Search for other papers by Jan H. van Angelen in
Current site
Google Scholar
PubMed
Close
,
Bert Wouters Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom, and Department of Physics, University of Colorado at Boulder, Boulder, Colorado

Search for other papers by Bert Wouters in
Current site
Google Scholar
PubMed
Close
, and
Michiel R. van den Broeke ** Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands

Search for other papers by Michiel R. van den Broeke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The modeling of the surface mass balance (SMB) of the Greenland Ice Sheet (GIS) requires high-resolution models in order to capture the observed large gradients in the steep marginal areas. Until now, global climate models have not been considered suitable to model ice sheet SMB owing to model biases and insufficient resolution. This study analyzes the GIS SMB simulated for the period 1850–2005 by the Community Earth System Model (CESM), which includes a new ice sheet component with multiple elevation classes for SMB calculations. The model is evaluated against observational data and output from the regional model Regional Atmospheric Climate Model version 2 (RACMO2). Because of a lack of major climate biases, a sophisticated calculation of snow processes (including surface albedo evolution) and an adequate downscaling technique, CESM is able to realistically simulate GIS surface climate and SMB. CESM SMB agrees reasonably well with in situ data from 475 locations (r = 0.80) and output from RACMO2 (r = 0.79). The simulated mean SMB for 1960–2005 is 359 ± 120 Gt yr−1 in the range of estimates from regional climate models. The simulated seasonal mass variability is comparable with mass observations from the Gravity Recovery and Climate Experiment (GRACE), with synchronous annual maximum (May) and minimum (August–September) and similar amplitudes of the seasonal cycle. CESM is able to simulate the bands of precipitation maxima along the southeast and northwest margins, but absolute precipitation rates are underestimated along the southeastern margin and overestimated in the high interior. The model correctly simulates the major ablation areas. Total refreezing represents 35% of the available liquid water (the sum of rain and melt).

Current affiliation: Department of Geoscience and Remote Sensing, Delft Institute of Technology, Delft, Netherlands.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Miren Vizcaíno, Stevinweg 1, 2628 CN Delft, Netherlands. E-mail: m.vizcaino@tudelft.nl

This article is included in the CESM1 Special Collection.

Abstract

The modeling of the surface mass balance (SMB) of the Greenland Ice Sheet (GIS) requires high-resolution models in order to capture the observed large gradients in the steep marginal areas. Until now, global climate models have not been considered suitable to model ice sheet SMB owing to model biases and insufficient resolution. This study analyzes the GIS SMB simulated for the period 1850–2005 by the Community Earth System Model (CESM), which includes a new ice sheet component with multiple elevation classes for SMB calculations. The model is evaluated against observational data and output from the regional model Regional Atmospheric Climate Model version 2 (RACMO2). Because of a lack of major climate biases, a sophisticated calculation of snow processes (including surface albedo evolution) and an adequate downscaling technique, CESM is able to realistically simulate GIS surface climate and SMB. CESM SMB agrees reasonably well with in situ data from 475 locations (r = 0.80) and output from RACMO2 (r = 0.79). The simulated mean SMB for 1960–2005 is 359 ± 120 Gt yr−1 in the range of estimates from regional climate models. The simulated seasonal mass variability is comparable with mass observations from the Gravity Recovery and Climate Experiment (GRACE), with synchronous annual maximum (May) and minimum (August–September) and similar amplitudes of the seasonal cycle. CESM is able to simulate the bands of precipitation maxima along the southeast and northwest margins, but absolute precipitation rates are underestimated along the southeastern margin and overestimated in the high interior. The model correctly simulates the major ablation areas. Total refreezing represents 35% of the available liquid water (the sum of rain and melt).

Current affiliation: Department of Geoscience and Remote Sensing, Delft Institute of Technology, Delft, Netherlands.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Miren Vizcaíno, Stevinweg 1, 2628 CN Delft, Netherlands. E-mail: m.vizcaino@tudelft.nl

This article is included in the CESM1 Special Collection.

Save
  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS 19, 172 pp.

  • Bales, R. C., and Coauthors, 2009: Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data. J. Geophys. Res., 114, D06116, doi:10.1029/2008JD011208.

    • Search Google Scholar
    • Export Citation
  • Bamber, J. L., R. L. Layberry, and S. Gogineni, 2001: A new ice thickness and bed data set for the Greenland Ice Sheet: 1. Measurement, data reduction, and errors. J. Geophys. Res., 106 (D24), 33 773–33 780.

    • Search Google Scholar
    • Export Citation
  • Box, J. E., and Coauthors, 2006: Greenland Ice Sheet surface mass balance variability (1988–2004) from calibrated polar MM5 output. J. Climate, 19, 27832800.

    • Search Google Scholar
    • Export Citation
  • Cogley, J. G., 2004: Greenland accumulation: An error model. J. Geophys. Res., 109, D18101, doi:10.1029/2003JD004449.

  • Ettema, J., M. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. Bamber, J. Box, and R. Bales, 2009: Higher surface mass balance of the Greenland Ice Sheet revealed by high-resolution climate modeling. Geophys. Res. Lett.,36, L12501, doi:10.1029/2009GL038110.

  • Ettema, J., M. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. Bamber, J. Box, and R. Bales, 2010a: Climate of the Greenland Ice Sheet using a high-resolution climate model. Part 1: Evaluation. Cryosphere, 4, 529544.

    • Search Google Scholar
    • Export Citation
  • Ettema, J., M. van den Broeke, E. van Meijgaard, and W. J. van de Berg, 2010b: Climate of the Greenland Ice Sheet using a high-resolution climate model. Part 2: Near-surface climate and energy balance. Cryosphere, 4, 529544.

    • Search Google Scholar
    • Export Citation
  • Fettweis, X., 2007: Reconstruction of the 1979–2006 Greenland Ice Sheet surface mass balance using the regional climate model MAR. Cryosphere, 1, 2140.

    • Search Google Scholar
    • Export Citation
  • Fettweis, X., M. Tedesco, M. van den Broeke, and J. Ettema, 2011: Melting trends over the Greenland Ice Sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere, 5, 359375, doi:10.5194/tc-5-359-2011.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., and C. S. Zender, 2006: Linking snowpack microphysics and albedo evolution. J. Geophys. Res., 111, D12208, doi:10.1029/2005JD006834.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., P. Huybrechts, I. Janssens, J. Cappelen, K. Steffen, and A. Stephens, 2005: Runoff and mass balance of the Greenland Ice Sheet: 1958–2003. J. Geophys. Res., 110, D13108, doi:10.1029/2004JD005641.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2008: Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. J. Climate, 21, 331341.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., 2010: Thickness sensitivities in the CICE sea ice model. Ocean Modell., 34, 137149, doi:10.1016/j.ocemod.2010.05.004.

  • Hurrell, J., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Jahn, A., and Coauthors, 2012: Late-twentieth-century simulation of Arctic sea ice and ocean properties in the CCSM4. J. Climate, 25, 14311452.

    • Search Google Scholar
    • Export Citation
  • Joughin, I., E. Rignot, C. E. Rosanova, B. K. Lucchitta, and J. Bohlander, 2003: Timing of recent accelerations of Pine Island Glacier, Antarctica. Geophys. Res. Lett., 30, 1706, doi:10.1029/2003GL017609.

    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., and M. R. van den Broeke, 2012: Modeling drifting snow in Antarctica with a regional climate model: 2. Results. J. Geophys. Res., 117, D05109, doi:10.1029/2010JD015419.

    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., M. R. van den Broeke, J. H. van Angelen, E. van Meijgaard, and S. J. Déry, 2012: Drifting snow climate of the Greenland Ice Sheet: A study with a regional climate model. Cryosphere, 6, 891899, doi:10.5194/tc-6-891-2012.

    • Search Google Scholar
    • Export Citation
  • Lipscomb, W., and Coauthors, 2013: Implementation and initial evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model. J. Climate, 26, 73527371.

    • Search Google Scholar
    • Export Citation
  • Mikolajewicz, U., M. Groeger, E. Maier-Reimer, G. Schurgers, A. Winguth, and M. Vizcaino, 2007: Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model. Climate Dyn., 28, 599633, doi:10.1007/s00382-006-0204-y.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168.

    • Search Google Scholar
    • Export Citation
  • Oleson, K., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp.

  • Rae, J. G. L., and Coauthors, 2012: Greenland Ice Sheet surface mass balance: Evaluating simulations and making projections with regional climate models. Cryosphere, 6, 12751294, doi:10.5194/tc-6-1275-2012.

    • Search Google Scholar
    • Export Citation
  • Ridley, J. K., P. Huybrechts, J. M. Gregory, and J. A. Lowe, 2005: Elimination of the Greenland Ice Sheet in a high CO2 climate. J. Climate, 18, 34093427.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., and P. Kanagaratnam, 2006: Changes in the velocity structure of the Greenland Ice Sheet. Science, 311, 986990.

  • Rignot, E., J. L. Bamber, M. R. van den Broeke, C. Davis, Y. Li, W. J. van de Berg, and E. van Meijgaard, 2008a: Recent Antarctic mass loss from radar interferometry and regional climate modeling. Nat. Geosci., 2, 106110.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. E. Box, E. Burgess, and E. Hanna, 2008b: Mass balance of the Greenland Ice Sheet from 1958 to 2007. Geophys. Res. Lett., 35, L20502, doi:10.1029/2008GL035417.

    • Search Google Scholar
    • Export Citation
  • Rutt, I., M. Hagdorn, N. J. R. Hulton, and A. J. Payne, 2009: The Glimmer Community Ice Sheet Model. J. Geophys. Res., 114, F02004, doi:10.1029/2008JF001015.

    • Search Google Scholar
    • Export Citation
  • Scambos, T. A., J. A. Bohlander, C. A. Shuman, and P. Skvarca, 2004: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31, L18402, doi:10.1029/2004GL020670.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and D. Wingham, 2007: Recent sea-level contributions of the Antarctic and Greenland Ice Sheets. Science, 315, 15291532.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., S. M. Uppala, D. P. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF re-analysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 29–35.

  • Smith, R. D., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM). Los Alamos National Laboratory Tech. Rep. LAUR-10-01853, 141 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf.]

  • Steffen, K., S. V. Nghiem, R. Huff, and G. Neumann, 2004: The melt anomaly of 2002 on the Greenland Ice Sheet from active and passive microwave satellite observations. Geophys. Res. Lett., 31, L20402, doi:10.1029/2004GL020444.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., D. Chambers, and J. Wahr, 2008: Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res., 113, B08410, doi:10.1029/2007JB005338.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • van Angelen, J. H., J. T. M. Lenaerts, S. Lhermitte, X. Fettweis, P. Kuipers Munneke, M. R. van den Broeke, and E. van Meijgaard, 2012: Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: A study with a regional climate model. Cryosphere, 6, 11751186, doi:10.5194/tc-6-1175-2012.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M., P. Smeets, J. Ettema, and P. K. Munneke, 2008a: Surface radiation balance in the ablation zone of the west Greenland Ice Sheet. J. Geophys. Res., 113, D13105, doi:10.1029/2007JD009283.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M., P. Smeets, J. Ettema, C. van der Veen, R. van de Wal, and J. Oerlemans, 2008b: Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland Ice Sheet. Cryosphere, 2, 179189.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M., and Coauthors, 2009: Partitioning recent Greenland mass loss. Science, 326, 984986.

  • van de Wal, R. S. W., W. Boot, C. J. P. P. Smeets, H. Snellen, M. R. van den Broeke, and J. Oerlemans, 2012: Twenty-one years of mass balance observations along the K-transect, west Greenland. Earth Syst. Sci. Data, 4, 3135, doi:10.5194/essd-4-31-2012.

    • Search Google Scholar
    • Export Citation
  • Velicogna, I., 2009: Increasing rates of ice mass loss from the Greenland and Antarctic Ice Sheets revealed by GRACE. Geophys. Res. Lett., 36, L19503, doi:10.1029/2009GL040222.

    • Search Google Scholar
    • Export Citation
  • Vizcaíno, M., U. Mikolajewicz, M. Gröger, E. Maier-Reimer, G. Schurgers, and A. M. E. Winguth, 2008: Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex earth system model. Climate Dyn., 31, 665690.

    • Search Google Scholar
    • Export Citation
  • Vizcaíno, M., U. Mikolajewicz, J. Jungclaus, and G. Schurgers, 2010: Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Climate Dyn., 34, 301324.

    • Search Google Scholar
    • Export Citation
  • Wientjes, I. G. M., and H. Oerlemans, 2010: An explanation for the dark region in the western melt zone of the Greenland Ice Sheet. Cryosphere, 4, 261268.

    • Search Google Scholar
    • Export Citation
  • Wouters, B., D. Chambers, and E. J. O. Schrama, 2008: GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett., 35, L20501, doi:10.1029/2008GL034816.

    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., M. B. Giovinetto, J. Li, H. G. Cornejo, M. A. Beckley, A. C. Brenner, J. L. Saba, and D. Yi, 2005: Mass changes of the Greenland and Antarctic Ice Sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51, 509527.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 815 216 21
PDF Downloads 404 127 15