Influence of the Southern Annular Mode on Projected Weakening of the Atlantic Meridional Overturning Circulation

Peter T. Spooner Department of Earth Sciences, University of Oxford, Oxford, United Kingdom

Search for other papers by Peter T. Spooner in
Current site
Google Scholar
PubMed
Close
,
Helen L. Johnson Department of Earth Sciences, University of Oxford, Oxford, United Kingdom

Search for other papers by Helen L. Johnson in
Current site
Google Scholar
PubMed
Close
, and
Tim J. Woollings Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Tim J. Woollings in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Coupled climate models predict density-driven weakening of the Atlantic meridional overturning circulation (AMOC) under greenhouse gas forcing, with considerable spread in the response between models. There is also a large spread in the predicted increase of the southern annular mode (SAM) index across these models. Regression analysis across model space using 11 non-eddy-resolving models suggests that up to 35% of the intermodel spread in the AMOC response may be associated with uncertainty in the magnitude of the increase in the SAM. Models with a large, positive SAM index response generally display a smaller weakening of the AMOC under greenhouse gas forcing. The initial AMOC strength is also a major cause of intermodel spread in its response to climate change. The increase in the SAM acts to reduce the weakening of the AMOC over the next century by around ⅓, through increases in wind stress over the Southern Ocean, northward Ekman transport, and upwelling around Antarctica. The SAM response is also related to an increase in the northward salt flux across 30°S and to salinity anomalies in the high-latitude North Atlantic. These provide a positive feedback by further reinforcement of the AMOC. The results suggest that, compared with the real ocean where eddies oppose wind-driven changes in Southern Ocean circulation, climate models underestimate the effects of anthropogenic climate change on the AMOC.

Corresponding author address: Peter Spooner, School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, United Kingdom. E-mail: peter.spooner@earth.oxfordalumni.org

Abstract

Coupled climate models predict density-driven weakening of the Atlantic meridional overturning circulation (AMOC) under greenhouse gas forcing, with considerable spread in the response between models. There is also a large spread in the predicted increase of the southern annular mode (SAM) index across these models. Regression analysis across model space using 11 non-eddy-resolving models suggests that up to 35% of the intermodel spread in the AMOC response may be associated with uncertainty in the magnitude of the increase in the SAM. Models with a large, positive SAM index response generally display a smaller weakening of the AMOC under greenhouse gas forcing. The initial AMOC strength is also a major cause of intermodel spread in its response to climate change. The increase in the SAM acts to reduce the weakening of the AMOC over the next century by around ⅓, through increases in wind stress over the Southern Ocean, northward Ekman transport, and upwelling around Antarctica. The SAM response is also related to an increase in the northward salt flux across 30°S and to salinity anomalies in the high-latitude North Atlantic. These provide a positive feedback by further reinforcement of the AMOC. The results suggest that, compared with the real ocean where eddies oppose wind-driven changes in Southern Ocean circulation, climate models underestimate the effects of anthropogenic climate change on the AMOC.

Corresponding author address: Peter Spooner, School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, United Kingdom. E-mail: peter.spooner@earth.oxfordalumni.org
Save
  • Alley, R. B., 2007: Wally was right: Predictive ability of the North Atlantic “conveyor belt” hypothesis for abrupt climate change. Annu. Rev. Earth Planet. Sci., 35, 241272.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., W. P. M. De Ruijter, A. Biastoch, and Z. Rainer, 2011: On the role of the agulhas system in ocean circulation and climate. Nature, 472, 429436.

    • Search Google Scholar
    • Export Citation
  • Bellucci, A., and K. J. Richards, 2006: Effects of NAO variability on the North Atlantic Ocean circulation. Geophys. Res. Lett.,33, L02612, doi:10.1029/2005GL024890.

  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1998: Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography, 13, 119121.

  • Broecker, W. S., G. H. Denton, R. L. Edwards, H. Cheng, R. B. Alley, and A. E. Putnam, 2010: Putting the younger dryas cold event into context. Quat. Sci. Rev., 29 (9–10), 10781081.

    • Search Google Scholar
    • Export Citation
  • Cai, W., G. Shi, T. Cowan, D. Bi, and J. Ribbe, 2005: The response of the southern annular mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geophys. Res. Lett.,32, L23706, doi:10.1029/2005GL024701.

  • Cheng, W., J. C. H. Chiang, and D. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 71877197.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

  • de Boer, A. M., and D. Nof, 2005: The island wind buoyancy connection. Tellus, 57, 783797.

  • de Boer, A. M., J. R. Toggweiler, and D. M. Sigman, 2008: Atlantic dominance of the meridional overturning circulation. J. Phys. Oceanogr., 38, 435450.

    • Search Google Scholar
    • Export Citation
  • de Boer, A. M., A. Gnanadesikan, N. R. Edwards, and A. J. Watson, 2010: Meridional density gradients do not control the Atlantic overturning circulation. J. Phys. Oceanogr., 40, 368380.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2008: Simulated impact of altered Southern Hemisphere winds on the Atlantic meridional overturning circulation. Geophys. Res. Lett.,35, L20708, doi:10.1029/2008GL035166.

  • Deshayes, J., and C. Frankignoul, 2008: Simulated variability of the circulation in the North Atlantic from 1953 to 2003. J. Climate, 21, 49194933.

    • Search Google Scholar
    • Export Citation
  • Dixon, K. W., T. L. Delworth, M. J. Spelman, and R. J. Stouffer, 1999: The influence of transient surface fluxes on North Atlantic overturning in a coupled GCM climate change experiment. Geophys. Res. Lett., 26, 27492752.

    • Search Google Scholar
    • Export Citation
  • Dong, B. W., and R. T. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J. Climate, 18, 11171135.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., G. J. van Oldenborgh, and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Climate,25, 8373–8379.

  • Farneti, R., and T. L. Delworth, 2010: The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. J. Phys. Oceanogr., 40, 23482354.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., and P. R. Gent, 2011: The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Modell., 39, 135145.

    • Search Google Scholar
    • Export Citation
  • Flückiger, J., and Coauthors, 2004: N2O and CH4 variations during the last glacial epoch: Insight into global processes. Global Biogeochem. Cycles, 18, GB1020, doi:10.1029/2003GB002122.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett.,33, L06701, doi:10.1029/2005GL025332.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150160.

  • Gent, P. R., and G. Danabasoglu, 2011: Response to increasing Southern Hemisphere winds in CCSM4. J. Climate, 24, 49924998.

  • Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273275.

  • Gillett, N. P., and J. C. Fyfe, 2013: Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett., 40, 1189–1193, doi:10.1002/grl.50249.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079.

  • Gong, D. Y., and S. W. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462.

  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett.,32, L12703, doi:10.1029/2005GL023209.

  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett.,33, L03502, doi:10.1029/2005GL025127.

  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the modeling eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., M. P. Meredith, J. R. Blundell, and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., P. L. Woodworth, M. P. Meredith, V. Stepanov, T. Whitworth, and A. R. Pyne, 2003: Coherence of Antarctic sea levels, Southern Hemisphere annular mode, and flow through Drake Passage. Geophys. Res. Lett., 30, 1464, doi:10.1029/2003GL017240.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and C. Deser, 2009: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 78, 2841.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., D. P. Marshall, and D. A. J. Sproson, 2007: Reconciling theories of a mechanically driven meridional overturning circulation with thermohaline forcing and multiple equilibria. Climate Dyn., 29 (7–8), 821836.

    • Search Google Scholar
    • Export Citation
  • Jones, J. M., and M. Widmann, 2004: Atmospheric science—Early peak in Antarctic Oscillation index. Nature, 432, 290291.

  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett.,37, L09708, doi:10.1029/2010GL042873.

  • Klinger, B. A., and C. Cruz, 2009: Decadal response of global circulation to Southern Ocean zonal wind stress perturbation. J. Phys. Oceanogr., 39, 18881904.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett.,32, L20708, doi:10.1029/2005GL024233.

  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45, RG2001, doi:10.1029/2004RG000166.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., R. S. Smith, Z. Wang, and J. M. Gregory, 2012: The influence of eddy parameterizations on the transport of the Antarctic Circumpolar Current in coupled climate models. Ocean Modell., 52, 18.

    • Search Google Scholar
    • Export Citation
  • Lee, M. M., D. P. Marshall, and R. G. Williams, 1997: On the eddy transfer of tracers: Advective or diffusive? J. Mar. Res., 55, 483505.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818.

    • Search Google Scholar
    • Export Citation
  • Marini, C., C. Frankignoul, and J. Mignot, 2011: Links between the southern annular mode and the Atlantic meridional overturning circulation in a climate model. J. Climate, 24, 624640.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143.

  • Marshall, G. J., P. A. Stott, J. Turner, W. M. Connolley, J. C. King, and T. A. Lachlan-Cope, 2004: Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett.,31, L14205, doi:10.1029/2004GL019952.

  • McManus, J. F., R. Francois, J. M. Gherardi, L. D. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834837.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Meijers, A. J. S.,E. Shuckburgh, N. Bruneau, J.-B. Sallee, T. J. Bracegirdle, and Z. Wang, 2012: Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. J. Geophys. Res.,117, C12008, doi:10.1029/2012JC008412.

  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett.,33, L16608, doi:10.1029/2006GL026499.

  • Meredith, M. P., P. L. Woodworth, C. W. Hughes, and V. Stepanov, 2004: Changes in the ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in the southern annular mode. Geophys. Res. Lett.,31, L21305, doi:10.1029/2004GL021169.

  • Meredith, M. P., A. C. N. Garabato, A. M. Hogg, and R. Farneti, 2012: Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Climate, 25, 99110.

    • Search Google Scholar
    • Export Citation
  • Mignot, J., and C. Frankignoul, 2005: The variability of the Atlantic meridional overturning circulation, the North Atlantic Oscillation, and the El Niño–Southern Oscillation in the Bergen Climate Model. J. Climate, 18, 23612375.

    • Search Google Scholar
    • Export Citation
  • Mikolajewicz, U., and R. Voss, 2000: The role of the individual air-sea flux components in CO2-induced changes of the ocean's circulation and climate. Climate Dyn., 16, 627642.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., G. A. Schmidt, and D. T. Shindell, 2006: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res.,111, D18101, doi:10.1029/2005JD006323.

  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibriated circumpolar currents. J. Phys. Oceanogr., 43, 507532.

    • Search Google Scholar
    • Export Citation
  • Obata, A., 2007: Climate–carbon cycle model response to freshwater discharge into the North Atlantic. J. Climate, 20, 59625976.

  • Pennell, C., and T. Reichler, 2011: On the effective number of climate models. J. Climate, 24, 23582367.

  • Perlwitz, J., S. Pawson, R. L. Fogt, J. E. Nielsen, and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett.,35, L08714, doi:10.1029/2008GL033317.

  • Robinson, L. F., J. F. Adkins, L. D. Keigwin, J. Southon, D. P. Fernandez, S. L. Wang, and D. S. Scheirer, 2005: Radiocarbon variability in the western North Atlantic during the last deglaciation. Science, 310, 14691473.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., 2005: Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature, 434, 628633.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and D. S. Battisti, 2007: Challenges to our understanding of the general circulation: Abrupt climate change. Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 332–372.

  • Shindell, D. T., and G. A. Schmidt, 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett.,31, L18209, doi:10.1029/2004GL020724.

  • Sijp, W. P., and M. H. England, 2009: Southern Hemisphere westerly wind control over the ocean's thermohaline circulation. J. Climate, 22, 12771286.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Son, S. W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489.

    • Search Google Scholar
    • Export Citation
  • Son, S. W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett.,36, L15705, doi:10.1029/2009GL038671.

  • Sowers, T., 2006: Late quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science, 311, 838840.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899.

  • Thompson, D. W. J., and D. J. Lorenz, 2004: The signature of the annular modes in the tropical troposphere. J. Climate, 17, 43304342.

    • Search Google Scholar
    • Export Citation
  • Thorpe, R. B., J. M. Gregory, T. C. Johns, R. A. Wood, and J. F. B. Mitchell, 2001: Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J. Climate, 14, 31023116.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42, 477500.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and J. Russell, 2008: Ocean circulation in a warming climate. Nature, 451, 286288.

  • Vellinga, M., and R. A. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54, 251267.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. J., H. Cheng, R. L. Edwards, Z. S. An, J. Y. Wu, C. C. Shen, and J. A. Dorale, 2001: A high-resolution absolute-dated late pleistocene monsoon record from Hulu Cave, China. Science, 294, 23452348.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., T. Kuhlbrodt, and M. P. Meredith, 2011: On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models. J. Geophys. Res.,116, C08011, doi:10.1029/2010JC006757.

  • Wolfe, C. L., and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810.

  • Wolff, E. W., J. Chappellaz, T. Blunier, S. O. Rasmussen, and A. Svensson, 2010: Millennial-scale variability during the last glacial: The ice core record. Quat. Sci. Rev., 29 (21–22), 28282838.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., J. M. Gregory, J. G. Pinto, M. Reyers, and D. J. Brayshaw, 2012: Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nat. Geosci., 5, 313317.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2002: What is the thermohaline circulation? Science, 298, 11791181.

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett.,32, L18701, doi:10.1029/2005GL023684.

  • Zickfeld, K., M. Eby, and A. J. Weaver, 2008: Carbon-cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric CO2. Global Biogeochem. Cycles, 22, GB3024, doi:10.1029/2007GB003118.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 227 56 0
PDF Downloads 109 38 4