A Physical Basis for the Probabilistic Prediction of the Accumulated Tropical Cyclone Kinetic Energy in the Western North Pacific

Hye-Mi Kim School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Hye-Mi Kim in
Current site
Google Scholar
PubMed
Close
,
Myong-In Lee School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Myong-In Lee in
Current site
Google Scholar
PubMed
Close
,
Peter J. Webster School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Peter J. Webster in
Current site
Google Scholar
PubMed
Close
,
Dongmin Kim School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Dongmin Kim in
Current site
Google Scholar
PubMed
Close
, and
Jin Ho Yoo APEC Climate Center, Pusan, South Korea

Search for other papers by Jin Ho Yoo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relationship between El Niño–Southern Oscillation (ENSO) and tropical storm (TS) activity over the western North Pacific Ocean is examined for the period from 1981 to 2010. In El Niño years, TS genesis locations are generally shifted to the southeast relative to normal years and the passages of TSs tend to recurve to the northeast. TSs of greater duration and more intensity during an El Niño summer induce an increase of the accumulated tropical cyclone kinetic energy (ACE). Based on the strong relationship between the TS properties and ENSO, a probabilistic prediction for seasonal ACE is investigated using a hybrid dynamical–statistical model. A statistical relationship is developed between the observed ACE and large-scale variables taken from the ECMWF seasonal forecast system 4 hindcasts. The ACE correlates positively with the SST anomaly over the central to eastern Pacific and negatively with the vertical wind shear near the date line. The vertical wind shear anomalies over the central and western Pacific are selected as predictors based on sensitivity tests of ACE predictive skill. The hybrid model performs quite well in forecasting seasonal ACE with a correlation coefficient between the observed and predicted ACE at 0.80 over the 30-yr period. A relative operating characteristic analysis also indicates that the ensembles have significant probabilistic skill for both the above-normal and below-normal categories. By comparing the ACE prediction over the period from 2003 to 2011, the hybrid model appears more skillful than the forecast from the Tropical Storm Risk consortium.

Corresponding author address: Hye-Mi Kim, 119 Endeavour Hall, School of Marine and Atmospheric Sciences, Stony Brook University/SUNY, Stony Brook, NY 11794. E-mail: hyemi.kim@stonybrook.edu

Abstract

The relationship between El Niño–Southern Oscillation (ENSO) and tropical storm (TS) activity over the western North Pacific Ocean is examined for the period from 1981 to 2010. In El Niño years, TS genesis locations are generally shifted to the southeast relative to normal years and the passages of TSs tend to recurve to the northeast. TSs of greater duration and more intensity during an El Niño summer induce an increase of the accumulated tropical cyclone kinetic energy (ACE). Based on the strong relationship between the TS properties and ENSO, a probabilistic prediction for seasonal ACE is investigated using a hybrid dynamical–statistical model. A statistical relationship is developed between the observed ACE and large-scale variables taken from the ECMWF seasonal forecast system 4 hindcasts. The ACE correlates positively with the SST anomaly over the central to eastern Pacific and negatively with the vertical wind shear near the date line. The vertical wind shear anomalies over the central and western Pacific are selected as predictors based on sensitivity tests of ACE predictive skill. The hybrid model performs quite well in forecasting seasonal ACE with a correlation coefficient between the observed and predicted ACE at 0.80 over the 30-yr period. A relative operating characteristic analysis also indicates that the ensembles have significant probabilistic skill for both the above-normal and below-normal categories. By comparing the ACE prediction over the period from 2003 to 2011, the hybrid model appears more skillful than the forecast from the Tropical Storm Risk consortium.

Corresponding author address: Hye-Mi Kim, 119 Endeavour Hall, School of Marine and Atmospheric Sciences, Stony Brook University/SUNY, Stony Brook, NY 11794. E-mail: hyemi.kim@stonybrook.edu
Save
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, S1S50.

  • Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, and S. Uppala, 2009: The ERA-Interim archive. ERA report series, No. 1, ECMWF, 16 pp. [Available online at ://www.ecmwf.int/publications/library/do/references/list/782009.]

  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006.

  • Camargo, S. J., A. G. Barnston, P. J. Klotzbach, and C. W. Landsea, 2007a: Seasonal tropical cyclone forecasts. WMO Bull., 56, 297309.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2008: Decadal variations of intense typhoon occurrence in the western North Pacific. Proc. Roy. Soc. London, A464, 249272.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., J. Shi, and C. M. Lam, 1998: Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea. Wea. Forecasting, 13, 9971004.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., J. Shi, and C. M. Lam, 2001: Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific. Wea. Forecasting, 16, 491498.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., S. P. Weng, N. Yamazaki, and S. Kiehne, 1998: Interannual variation in the tropical cyclone activity over the western North Pacific. Mon. Wea. Rev., 126, 10801090.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., S. Y. Wang, and M. C. Yen, 2006: Interannual variation of the tropical cyclone activity over the western North Pacific. J. Climate, 19, 57095720.

    • Search Google Scholar
    • Export Citation
  • Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 29342944.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and J. Shukla, 2009: Artificial skill due to predictor screening. J. Climate, 22, 331345.

  • Elsner, J. B., and K. B. Liu, 2003: Examining the ENSO–typhoon hypothesis. Climate Res., 25, 4354.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Ho, C. H., J. J. Baik, J. H. Kim, D. Y. Gong, and C. H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 17671776.

    • Search Google Scholar
    • Export Citation
  • Ho, C. H., J. H. Kim, H. S. Kim, C. H. Sui, and D. Y. Gong, 2005: Possible influence of the Antarctic Oscillation on tropical cyclone activity in the western North Pacific. J. Geophys. Res., 110, D19104, doi:10.1029/2005JD005766.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., and P. J. Webster, 2010: Extended-range seasonal hurricane forecasts for the North Atlantic with a hybrid dynamical-statistical model. Geophys. Res. Lett., 37, L21705, doi:10.1029/2010GL044792.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 18391849.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., C.-H. Ho, C.-H. Sui, and S. K. Park, 2005: Dipole structure of interannual variations in summertime tropical cyclone activity over East Asia. J. Climate, 18, 53445356.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and M. C. Kruk, 2010: Quantifying interagency differences in tropical cyclone best-track wind speed estimates. Mon. Wea. Rev., 138, 14591473.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376.

    • Search Google Scholar
    • Export Citation
  • Lea, A. S., and M. A. Saunders, 2006: Seasonal prediction of typhoon activity in the Northwest Pacific basin. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., P5.23. [Available online at https://ams.confex.com/ams/27Hurricanes/techprogram/paper_107641.htm.]

  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401412.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2003: Climatological characteristics and seasonal forecasting of tropical cyclones making landfall along the south China coast. Mon. Wea. Rev., 131, 16501662.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Climate, 21, 44644476.

    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Matsuura, T., M. Yumoto, and S. Iizuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dyn., 21, 105117.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., and Coauthors, 2011: The new ECMWF seasonal forecast system (System 4). ECMWF Tech. Memo. 656, 51 pp.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2000: Effect of ENSO and MJO on the western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 17391742.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., and Coauthors, 2011: ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Climate Dyn., 37, 455471, doi:10.1007/s00382-010-0947-3.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., M. Zhao, H. Wang, G. Villarini, A. Rosati, A. Kumar, I. M. Held, and R. Gudgel, 2011: Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2007: Dynamically based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34, L16815, doi:10.1029/2007GL030740.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117, doi:10.1007/s00382-008-0460-0.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J.-K. E. Schemm, A. Kumar, W. Wang, L. Long, M. Chelliah, G. D. Bell, and P. Peng, 2009: A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J. Climate, 22, 44814500.

    • Search Google Scholar
    • Export Citation
  • Wu, M. C., W. L. Chang, and W. M. Leung, 2004: Impacts of El Niño–Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. J. Climate, 17, 14191428.

    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., S. K. Kang, B. P. Kirtman, J. H. Kim, M. H. Kwon, and C. H. Kim, 2010: Decadal change in relationship between western North Pacific tropical cyclone frequency and the tropical Pacific SST. Meteor. Atmos. Phys., 106, 179189.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 402 177 11
PDF Downloads 210 69 6