Linearity of Climate Response to Increases in Black Carbon Aerosols

Salil Mahajan Oak Ridge National Laboratory, Oak Ridge, Tennessee

Search for other papers by Salil Mahajan in
Current site
Google Scholar
PubMed
Close
,
Katherine J. Evans Oak Ridge National Laboratory, Oak Ridge, Tennessee

Search for other papers by Katherine J. Evans in
Current site
Google Scholar
PubMed
Close
,
James J. Hack Oak Ridge National Laboratory, Oak Ridge, Tennessee

Search for other papers by James J. Hack in
Current site
Google Scholar
PubMed
Close
, and
John E. Truesdale National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by John E. Truesdale in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impacts of absorbing aerosols on global climate are not completely understood. This paper presents the results of idealized experiments conducted with the Community Atmosphere Model, version 4 (CAM4), coupled to a slab ocean model (CAM4–SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semidirect effects. CAM4-SOM was forced with 0, 1×, 2×, 5×, and 10× an estimate of the present day concentration of BC while maintaining the estimated present day global spatial and vertical distribution. The top-of-atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semidirect effect for the 1 × BC experiment is positive but becomes increasingly negative for higher BC concentrations. The global-average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K W−1 m2 when the semidirect effects are accounted for and 0.22 K W−1 m2 with only the direct effects considered. Global-average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4% W−1 m2. The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the intertropical convergence zone in the simulations at a rate of 4° PW−1. Global-average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the southern tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

Corresponding author address: Salil Mahajan, 1 Bethel Valley Road, P.O. Box 2008, Oak Ridge National Laboratory, Oak Ridge, TN 37831. E-mail: mahajans@ornl.gov

Abstract

The impacts of absorbing aerosols on global climate are not completely understood. This paper presents the results of idealized experiments conducted with the Community Atmosphere Model, version 4 (CAM4), coupled to a slab ocean model (CAM4–SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semidirect effects. CAM4-SOM was forced with 0, 1×, 2×, 5×, and 10× an estimate of the present day concentration of BC while maintaining the estimated present day global spatial and vertical distribution. The top-of-atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semidirect effect for the 1 × BC experiment is positive but becomes increasingly negative for higher BC concentrations. The global-average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K W−1 m2 when the semidirect effects are accounted for and 0.22 K W−1 m2 with only the direct effects considered. Global-average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4% W−1 m2. The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the intertropical convergence zone in the simulations at a rate of 4° PW−1. Global-average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the southern tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

Corresponding author address: Salil Mahajan, 1 Bethel Valley Road, P.O. Box 2008, Oak Ridge National Laboratory, Oak Ridge, TN 37831. E-mail: mahajans@ornl.gov
Save
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 10421047, doi:10.1126/science.288.5468.1042.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and S. C. Sherwood, 2010: Aerosol–cloud semi-direct effect and land–sea temperature contrast in a GCM. Geophys. Res. Lett.,37, L07702, doi:10.1029/2010GL042759.

  • Allen, R. J., and S. C. Sherwood, 2011: The impact of natural versus anthropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Climate Dyn.,36, 1959–1978, doi:10.1007/s00382-010-0898-8.

  • Andrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing, and global temperature change. Geophys. Res. Lett.,37, L14701, doi:10.1029/2010GL043991.

  • Bala, G., K. Caldeira, and R. Nemani, 2010: Fast versus slow response in climate change: Implications for the global hydrological cycle. Climate Dyn.,35, 423–434, doi:10.1007/s00382-009-0583-y.

  • Bitz, C. M., K. M. Shell, P. R. Gent, D. A. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sensitivity of the Community Climate System Model, version 4. J. Climate,25, 3053–3070.

  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505.

    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res.,118, 53805552, doi:10.1002/jgrd.50171.

  • Chen, C.-T., and V. Ramaswamy, 1996: Sensitivity of simulated global climate to perturbations in low cloud microphysical properties. Part II: Spatially localized perturbations. J. Climate,9, 2788–2801.

  • Chiang, J. C. H., and C. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496.

    • Search Google Scholar
    • Export Citation
  • Chung, S. H., and J. H. Seinfeld, 2005: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res.,110, D11102, doi:10.1029/2004JD005441.

  • Conley, A. J., J.-F. Lamarque, F. Vitt, W. D. Collins, and J. Kiehl, 2012: PORT, a CESM tool for the diagnosis of radiative forcing. Geosci. Model Dev. Discuss.,5, 2687–2704, doi:10.5194/gmdd-5-2687-2012.

  • Cubasch, J., and R. D. Cess, 1990: Processes and modeling climate change: The IPCC scientific assessment. Climate Change: The IPCC Scientific Assessment, J. T. Houghton, G. J. Jenkins, and J. J. Ephraums, Eds., Cambridge University Press, 69–72.

  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

  • Frieler, K., M. Meinshausen, T. Schneider von Deimling, T. Andrews, and P. Forster, 2011: Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophys. Res. Lett.,38, L04702, doi:10.1029/2010GL045953.

  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate,25, 720–733.

  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res.,102 (D6), 6831–6864.

  • Haywood, J. M., L. J. Donner, A. Jones, and J.-C. Golaz, 2009: Global indirect radiative forcing caused by aerosols: IPCC (2007) and beyond. Clouds in the Perturbed Climate System, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 451–467.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate,19, 5686–5699.

  • Johnson, B. T., K. P. Shine, and P. M. Forster, 2004: The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quart. J. Roy. Meteor. Soc.,130, 1407–1422, doi:10.1256/qj.03.61.

  • Jones, A., J. M. Haywood, and O. Boucher, 2007: Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model. J. Geophys. Res.,112, D20211, doi:10.1029/2007JD008688.

  • Kaufman, Y. J., I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, 2005: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA, 102, 11 20711 212.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate,6, 1587–1606.

  • Koch, D., and A. D. Del Genio, 2010: Black carbon semi-direct effects on cloud cover: Review and synthesis. Atmos. Chem. Phys., 10, 76857696, doi:10.5194/acp-10-7685-2010.

    • Search Google Scholar
    • Export Citation
  • Koch, D., and Coauthors, 2009: Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys.,9, 9001–9026, doi:10.5194/acp-9-9001-2009.

  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys.,10, 7017–7039, doi:10.5194/acp-10-7017-2010.

  • Levy, H., M. D. Schwarzkopf, L. Horowitz, V. Ramaswamy, and K. L. Findell, 2008: Strong sensitivity of late 21st century climate to projected changes in short-lived air pollutants. J. Geophys. Res.,113, D06102, doi:10.1029/2007JD009176.

  • Lohmann, U., and Coauthors, 2010: Total aerosol effect: Radiative forcing or radiative flux perturbation? Atmos. Chem. Phys., 10, 32353246, doi:10.5194/acp-10-3235-2010.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Saravanan, and P. Chang, 2010: Free and forced variability of the tropical Atlantic Ocean: Role of the wind–evaporation–sea surface temperature feedback. J. Climate,23, 5958–5977.

  • Mahajan, S., R. Saravanan, and P. Chang, 2011: The role of the wind–evaporation–sea surface temperature (WES) feedback as a thermodynamic pathway for the equatorward propagation of high-latitude sea ice–induced cold anomalies. J. Climate,24, 1350–1361.

  • Mahajan, S., K. J. Evans, J. E. Truesdale, J. J. Hack, and J.-F. Lamarque, 2012: Interannual tropospheric aerosol variability in late twentieth century and its impact on tropical Atlantic and West African climate by direct and semi-direct effects. J. Climate, 25, 8031–8056.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., and V. Ramaswamy, 2009: Nonlinear climate and hydrological responses to aerosol effects. J. Climate,22, 1329–1339.

  • Ming, Y., V. Ramaswamy, and G. Persad, 2010: Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett.,37, L13701, doi:10.1029/2010GL042895.

  • Myhre, G., and Coauthors, 2012: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. Discuss., 12, 22 35522 413, doi:10.5194/acpd-12-22355-2012.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM4). NCAR Tech. Rep. NCAR/TN+STR-485, 120 pp.

  • Persad, G. G., Y. Ming, and V. Ramaswamy, 2012: Tropical tropospheric–only responses to absorbing aerosols. J. Climate,25, 2471–2480.

  • Philander, S. G. H., D. Gu, G. Lambert, T. Li, D. Halpern, N. C. Lau, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci.,1, 221–227, doi:10.1038/ngeo156.

  • Ramaswamy, V., and C.-T. Chen, 1997: Climate forcing–response relationships for greenhouse and shortwave radiative perturbations. Geophys. Res. Lett.,24, 667–670.

  • Roberts, D. L., and A. Jones, 2004: Climate sensitivity to black carbon aerosol from fossil fuel combustion. J. Geophys. Res.,109, D16202, doi:10.1029/2004JD004676.

  • Rotstayn, L. D., and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol effect. J. Climate,15, 2103–2116.

  • Sakaeda, N., R. Wood, and P. J. Rasch, 2011: Direct and semidirect aerosol effects of southern African biomass burning aerosol. J. Geophys. Res.,116, D12205, doi:10.1029/2010JD015540.

  • Schultz, M. G., and Coauthors, 2008: Global wildland fire emissions from 1960 to 2000. Global Biogeochem. Cycles,22, GB2002, doi:10.1029/2007GB003031.

  • Shindell, D. T., H. Levy, M. D. Schwarzkopf, L. W. Horowitz, J.-F. Lamarque, and G. Faluvegi, 2008: Multimodel projections of climate change from short-lived emissions due to human activities. J. Geophys. Res.,113, D11109, doi:10.1029/2007JD009152.

  • Shiogama, H., S. Emori, K. Takahashi, T. Nagashima, T. Ogura, T. Nozawa, and T. Takemura, 2010: Emission scenario dependency of precipitation on global warming in the MIROC3.2 model. J. Climate,23, 2404–2417.

  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate,19, 3354–3360.

  • Tie, X., and Coauthors, 2005: Assessment of the global impact of aerosols on tropospheric oxidants. J. Geophys. Res.,110, D03204, doi:10.1029/2004JD005359.

  • Wang, C., 2007: Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation. Geophys. Res. Lett.,34, L05709, doi:10.1029/2006GL028416.

  • Wilcox, E. M., 2010: Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol. Atmos. Chem. Phys., 10, 11 76911 777, doi:10.5194/acp-10-11769-2010.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate,21, 4399–4423.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 335 91 9
PDF Downloads 173 44 9