## Abstract

The statistical prediction of local sea surface winds from large-scale, free-tropospheric fields is investigated at a number of locations over the global ocean using a statistical downscaling model based on multiple linear regression. The predictands (the mean and standard deviation of both vector wind components and wind speed) calculated from ocean buoy observations on daily, weekly, and monthly scales are regressed on upper-level predictor fields from reanalysis products. It is found that in general the mean vector wind components are more predictable than mean wind speed in the North Pacific and Atlantic, while in the tropical Pacific and Atlantic the difference in predictive skill between mean vector wind components and wind speed is not substantial. The predictability of wind speed relative to vector wind components is interpreted by an idealized model of the wind speed probability density function, which indicates that in the midlatitudes the mean wind speed is more sensitive to the vector wind standard deviations (which generally are not well predicted) than to the mean vector winds. In the tropics, the mean wind speed is found to be more sensitive to the mean vector winds. While the idealized probability model does a good job of characterizing month-to-month variations in the mean wind speed in terms of the vector wind statistics, month-to-month variations in the standard deviation of speed are not well modeled. A series of Monte Carlo experiments demonstrates that the inconsistency in the characterization of wind speed standard deviation is the result of differences of sampling variability between the vector wind and wind speed statistics.

*Corresponding author address:*Adam Monahan, School of Earth and Ocean Sciences, University of Victoria, P.O. Box 3065 STN CSC, Victoria BC V8W 3V6, Canada. E-mail: monahana@uvic.ca