Response of Tropical Cyclones to Idealized Climate Change Experiments in a Global High-Resolution Coupled General Circulation Model

Ray Bell Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Ray Bell in
Current site
Google Scholar
PubMed
Close
,
Jane Strachan National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Jane Strachan in
Current site
Google Scholar
PubMed
Close
,
Pier Luigi Vidale National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Pier Luigi Vidale in
Current site
Google Scholar
PubMed
Close
,
Kevin Hodges National Centre for Earth Observation, University of Reading, Reading, United Kingdom

Search for other papers by Kevin Hodges in
Current site
Google Scholar
PubMed
Close
, and
Malcolm Roberts Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Malcolm Roberts in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors present an assessment of how tropical cyclone activity might change owing to the influence of increased atmospheric carbon dioxide concentrations, using the U.K. High-Resolution Global Environment Model (HiGEM) with N144 resolution (~90 km in the atmosphere and ~40 km in the ocean). Tropical cyclones are identified using a feature-tracking algorithm applied to model output. Tropical cyclones from idealized 30-yr 2×CO2 (2CO2) and 4×CO2 (4CO2) simulations are compared to those identified in a 150-yr present-day simulation that is separated into a five-member ensemble of 30-yr integrations. Tropical cyclones are shown to decrease in frequency globally by 9% in the 2CO2 and 26% in the 4CO2. Tropical cyclones only become more intense in the 4CO2; however, uncoupled time slice experiments reveal an increase in intensity in the 2CO2. An investigation into the large-scale environmental conditions, known to influence tropical cyclone activity in the main development regions, is used to determine the response of tropical cyclone activity to increased atmospheric CO2. A weaker Walker circulation and a reduction in zonally averaged regions of updrafts lead to a shift in the location of tropical cyclones in the Northern Hemisphere. A decrease in mean ascent at 500 hPa contributes to the reduction of tropical cyclones in the 2CO2 in most basins. The larger reduction of tropical cyclones in the 4CO2 arises from further reduction of the mean ascent at 500 hPa and a large enhancement of vertical wind shear, especially in the Southern Hemisphere, North Atlantic, and northeast Pacific.

Corresponding author address: Ray Bell, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading, RG6 6BB, United Kingdom. E-mail: r.j.bell@pgr.reading.ac.uk

Abstract

The authors present an assessment of how tropical cyclone activity might change owing to the influence of increased atmospheric carbon dioxide concentrations, using the U.K. High-Resolution Global Environment Model (HiGEM) with N144 resolution (~90 km in the atmosphere and ~40 km in the ocean). Tropical cyclones are identified using a feature-tracking algorithm applied to model output. Tropical cyclones from idealized 30-yr 2×CO2 (2CO2) and 4×CO2 (4CO2) simulations are compared to those identified in a 150-yr present-day simulation that is separated into a five-member ensemble of 30-yr integrations. Tropical cyclones are shown to decrease in frequency globally by 9% in the 2CO2 and 26% in the 4CO2. Tropical cyclones only become more intense in the 4CO2; however, uncoupled time slice experiments reveal an increase in intensity in the 2CO2. An investigation into the large-scale environmental conditions, known to influence tropical cyclone activity in the main development regions, is used to determine the response of tropical cyclone activity to increased atmospheric CO2. A weaker Walker circulation and a reduction in zonally averaged regions of updrafts lead to a shift in the location of tropical cyclones in the Northern Hemisphere. A decrease in mean ascent at 500 hPa contributes to the reduction of tropical cyclones in the 2CO2 in most basins. The larger reduction of tropical cyclones in the 4CO2 arises from further reduction of the mean ascent at 500 hPa and a large enhancement of vertical wind shear, especially in the Southern Hemisphere, North Atlantic, and northeast Pacific.

Corresponding author address: Ray Bell, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading, RG6 6BB, United Kingdom. E-mail: r.j.bell@pgr.reading.ac.uk
Save
  • Bengtsson, L., M. Botzet, and M. Esch, 1995: Hurricane-type vortices in a general circulation model. Tellus, 47A, 175196.

  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T. Yamagata, 2007a: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and M. Esch, 2007b: Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analyses. Tellus, 59A, 396416.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. G. Barnston, P. J. Klotzbach, and C. W. Landsea, 2007: Seasonal tropical cyclone forecasts. WMO Bull., 56, 297309.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. K. Tippett, A. H. Sobel, G. A. Vecchi, M. Zhao, and I. M. Held, 2012: Analysis of tropical cyclone genesis indices for climate change using the HIRAM model. Preprints, Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra Beach, FL, Amer. Meteor. Soc., 4B.1. [Available online at https://ams.confex.com/ams/30Hurricane/webprogram/Paper205593.html.]

  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2011: Northern Hemisphere extratropical cyclones in a warming climate in the HiGEM high-resolution climate model. J. Climate, 24, 53365352.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485.

  • Emanuel, K. A., 2008: The hurricane–climate connection. Bull. Amer. Meteor. Soc., 89, ES10ES20.

  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., K. Oouchi, M. Satoh, H. Tomita, and Y. Yamada, 2010: Comparison of explicitly simulated and downscaled tropical cyclone activity in a high-resolution global climate model. J. Adv. Model. Earth Syst., 2 (4), doi:10.3894/JAMES.2010.2.9.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., I. M. Held, T. Knutson, and J. Sirutis, 2009: The roles of wind shear and thermal stratification in past and projected changes of Atlantic tropical cyclone activity. J. Climate, 22, 47234734.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., E. Scoccimarro, and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228.

    • Search Google Scholar
    • Export Citation
  • Guo, L., E. J. Highwood, L. Shaffrey, and A. Turner, 2013: The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian summer monsoon. Atmos. Chem. Phys., 13, 15211534.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Held, I. M., and M. Zhao, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Climate, 24, 53535364.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2006: The new Hadley Centre Climate Model (HadGEM1): Evaluation of coupled simulations. J. Climate, 19, 13271353.

    • Search Google Scholar
    • Export Citation
  • Kang, S., and J. Lu, 2012: Expansion of the Hadley cell under global warming: Winter versus summer. J. Climate, 25, 83878393.

  • Kim, J.-H., S. J. Brown, and R. E. McDonald, 2010: Future changes in tropical cyclone genesis in fully dynamic ocean- and mixed layer ocean-coupled climate models: A low-resolution model study. Climate Dyn., 37, 737758.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163.

  • Landsea, C. W., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88, 197208.

  • Landsea, C. W., B. A. Harper, K. Hoarau, and J. A. Knaff, 2006: Can we detect trends in extreme tropical cyclones? Science, 313, 452454.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., D. B. Enfield, and C. Wang, 2011: Future impact of differential interbasin ocean warming on Atlantic hurricanes. J. Climate, 24, 12641275.

    • Search Google Scholar
    • Export Citation
  • Li, T., M. Kwon, M. Zhao, J.-S. Kug, J.-J. Luo, and W. Yu, 2010: Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett., 37, L21804, doi:10.1029/2010GL045124.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett.,34, L06805, doi:10.1029/2006GL028443.

  • Manganello, J. V., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 38673893.

    • Search Google Scholar
    • Export Citation
  • McDonald, R. E., D. G. Bleaken, D. R. Creswell, V. D. Pope, and C. A. Senior, 2005: Tropical storms: Representation and diagnosis in climate models and the impacts of climate change. J. Climate, 18, 12621275.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 7376.

  • Murakami, H., R. Mizuta, and E. Shindo, 2012a: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39, 25692584.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012b: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276.

    • Search Google Scholar
    • Export Citation
  • Ringer, M. A., G. M. Martin, C. Z. Greeves, T. J. Hinton, P. M. James, V. D. Pope, A. A. Scaife, and R. A. Stratton, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of variability and regional climate. J. Climate, 19, 13021326.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2009: Impact of resolution on the tropical Pacific circulation in a matrix of coupled models. J. Climate, 22, 25412556.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O'Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L. C., and Coauthors, 2009: U.K. HiGEM: The new U.K. High-Resolution Global Environment Model—Model description and basic evaluation. J. Climate, 22, 18611896.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, N. J. Dunstone, D. Fereday, J. M. Murphy, H. Pohlmann, and A. Scaife, 2010: Skilful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849.

    • Search Google Scholar
    • Export Citation
  • Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Climate, 26, 133152.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., A. Noda, and N. Sato, 2002: Influence of global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249272.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., H. Murakami, and J. Yoshimura, 2009: A reduction in global tropical cyclone frequency due to global warming. SOLA, 5, 164167.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., H. Murakami, and J. Yoshimura, 2012: On the mechanism of tropical cyclone frequency changes due to global warming. J. Meteor. Soc. Japan, 90A, 397408.

    • Search Google Scholar
    • Export Citation
  • Tang, B. H., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31, L24204, doi:10.1029/2004GL021072.

    • Search Google Scholar
    • Export Citation
  • Tsutsui, J., 2002: Implications of anthropogenic climate change for tropical cyclone activity: A case study with the NCAR CCM2. J. Meteor. Soc. Japan, 80, 4565.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007b: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., and M. Sugi, 2005: Tropical cyclone climatology in a high-resolution AGCM—Impacts of SST warming and CO2 increase. SOLA, 1, 133136.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2012: TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. J. Climate, 25, 29953009.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S. J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 804 198 11
PDF Downloads 387 126 15