Characteristics of Subsurface Ocean Response to ENSO Assessed from Simulations with the NCEP Climate Forecast System

Hui Wang Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland, and Wyle Science, Technology and Engineering Group, Houston, Texas

Search for other papers by Hui Wang in
Current site
Google Scholar
PubMed
Close
,
Arun Kumar Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

Search for other papers by Arun Kumar in
Current site
Google Scholar
PubMed
Close
, and
Wanqiu Wang Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

Search for other papers by Wanqiu Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The subsurface ocean temperature response to El Niño–Southern Oscillation (ENSO) is examined based on 31-yr (1981–2011) simulations with the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) coupled model. The model sea surface temperature (SST) in the tropical Pacific is relaxed to observations to ensure realistic ENSO variability in the simulations.

In the tropical Pacific, the subsurface temperature response to the ENSO SST is closely related to the variability of thermocline. The subsurface response is stronger and deeper in the tropical Indian Ocean than in the tropical Atlantic. The analysis at three selected locations reveals that the peak response of the subsurface temperature to ENSO lags the Niño-3.4 SST by 3, 6, and 6 months, respectively, in the southern tropical Indian Ocean, the northern tropical Atlantic, and the North Pacific, where SSTs are also known to be strongly influenced by ENSO. The ENSO-forced temperature anomalies gradually penetrate to the deeper ocean with time in the North Pacific and the tropical Atlantic, but not in the tropical Indian Ocean where the subsurface response at different depths peaks almost at the same time (i.e., at about 3–4 months following ENSO). It is demonstrated that the ENSO-induced surface wind stress plays an important role in determining the time scale and strength of the subsurface temperature response to ENSO in the North Pacific and the northern tropical Atlantic. Additionally, the ENSO-related local surface latent heat flux also contributes to the subsurface response to ENSO in these two regions.

Corresponding author address: Dr. Hui Wang, NOAA Climate Prediction Center, 5830 University Research Court, NCWCP, College Park, MD 20740. E-mail: hui.wang@noaa.gov

Abstract

The subsurface ocean temperature response to El Niño–Southern Oscillation (ENSO) is examined based on 31-yr (1981–2011) simulations with the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) coupled model. The model sea surface temperature (SST) in the tropical Pacific is relaxed to observations to ensure realistic ENSO variability in the simulations.

In the tropical Pacific, the subsurface temperature response to the ENSO SST is closely related to the variability of thermocline. The subsurface response is stronger and deeper in the tropical Indian Ocean than in the tropical Atlantic. The analysis at three selected locations reveals that the peak response of the subsurface temperature to ENSO lags the Niño-3.4 SST by 3, 6, and 6 months, respectively, in the southern tropical Indian Ocean, the northern tropical Atlantic, and the North Pacific, where SSTs are also known to be strongly influenced by ENSO. The ENSO-forced temperature anomalies gradually penetrate to the deeper ocean with time in the North Pacific and the tropical Atlantic, but not in the tropical Indian Ocean where the subsurface response at different depths peaks almost at the same time (i.e., at about 3–4 months following ENSO). It is demonstrated that the ENSO-induced surface wind stress plays an important role in determining the time scale and strength of the subsurface temperature response to ENSO in the North Pacific and the northern tropical Atlantic. Additionally, the ENSO-related local surface latent heat flux also contributes to the subsurface response to ENSO in these two regions.

Corresponding author address: Dr. Hui Wang, NOAA Climate Prediction Center, 5830 University Research Court, NCWCP, College Park, MD 20740. E-mail: hui.wang@noaa.gov
Save
  • Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12, 24192433.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at http://ams.confex.com/ams/84Annual/techprogram/paper_70720.htm.]

  • Chang, P., Y. Fang, R. Saravanan, L. Ji, and H. Seidel, 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324328.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Wang, A. Kumar, H. Wang, and B. Jha, 2012: Ocean surface impacts on the seasonal-mean precipitation over the tropical Indian Ocean. J. Climate, 25, 35663582.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18, 41304149.

  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929945.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., W. Cai, M. Collins, A. Fedorov, F.-F. Jin, A. Kumar, D.-Z. Sun, and A. Wittenberg, 2012: New strategies for evaluating ENSO processes in climate models. Bull. Amer. Meteor. Soc., 93, 235238.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, Y. Xue, W. Wang, and B. Jha, 2011: Persistent atmospheric and oceanic anomalies in the North Atlantic from summer 2009 to summer 2010. J. Climate, 24, 58125830.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Jha, and B. Huang, 2012: An analysis of forced and internal variability in a warmer climate in CCSM3. J. Climate, 25, 23562373.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2007: Mechanisms for the interannual variability in the tropical Indian Ocean. Part I: The role of remote forcing from the tropical Pacific. J. Climate, 20, 29172936.

    • Search Google Scholar
    • Export Citation
  • Jha, B., and A. Kumar, 2009: A comparison of the atmospheric response to ENSO in coupled and uncoupled model simulations. Mon. Wea. Rev., 137, 479487.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1995: Prospects and limitations of seasonal atmospheric GCM predictions. Bull. Amer. Meteor. Soc., 76, 335345.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Z.-Z. Hu, 2012: Uncertainty in ocean–atmosphere feedbacks associated with ENSO in the reanalysis products. Climate Dyn., 39, 575588.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Z.-Z. Hu, 2013: Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Climate Dyn., doi:10.1007/s00382-013-1721-0, in press.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., H. Wang, W. Wang, Y. Xue, and Z.-Z. Hu, 2013: Does knowing the oceanic PDO phase help predict the atmospheric anomalies in subsequent months? J. Climate, 26, 1268–1285.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1985: Modeling the seasonal dependence of the atmospheric response to observed El Niños in 1962–76. Mon. Wea. Rev., 113, 19701996.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2001: Impact of ENSO on SST variability in the North Pacific and North Atlantic: Seasonal dependence and role of extratropical sea–air coupling. J. Climate, 14, 28462866.

    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., and M. J. McPhaden, 2012: On the inconsistent relationship between Pacific and Atlantic Niños. J. Climate, 25, 42944303.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The Coupled Model Intercomparison Project (CMIP). Bull. Amer. Meteor. Soc., 81, 313318.

    • Search Google Scholar
    • Export Citation
  • Monterey, G. I., and S. Levitus, 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA Atlas NESDIS 14, 96 pp.

  • Moorthi, S., H.-L. Pan, and P. Caplan, 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Tech. Procedures Bull. 484, 14 pp. [Available online at http://www.nws.noaa.gov/om/tpb/484.htm.]

  • Murtugudde, R., and A. J. Busalacchi, 1999: Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. J. Climate, 12, 23002326.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 Manual. NOAA/Geophysical Fluid Dynamics Laboratory, 668 pp.

  • Pan, H.-L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary layer developments. Bound.-Layer Meteor., 38, 185202.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517.

  • Saha, S., and Coauthors, 2013: The NCEP Climate Forecast System version 2. J. Climate, in press.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. J. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 (C7), 14 29114 324.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and R. Fu, 2000: Winter monthly mean atmospheric anomalies over the North Pacific and North America associated with El Niño SSTs. J. Climate, 13, 34353447.

    • Search Google Scholar
    • Export Citation
  • Wang, H., A. Kumar, W. Wang, and Y. Xue, 2012a: Seasonality of the Pacific decadal oscillation. J. Climate, 25, 2538.

  • Wang, H., A. Kumar, W. Wang, and Y. Xue, 2012b: Influence of ENSO on Pacific decadal variability: An analysis based on the NCEP Climate Forecast System. J. Climate, 25, 61366151.

    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts. Wea. Forecasting, 25, 950969.

  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264.

  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864878.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., and Coauthors, 2012: A comparative analysis of upper-ocean heat content variability from an ensemble of operational ocean reanalyses. J. Climate, 25, 69056929.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278.

  • Zhang, M. H., R. D. Cess, and S. C. Xie, 1996: Relationship between cloud radiative forcing and sea surface temperatures over the entire tropical oceans. J. Climate, 9, 13741384.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 91 5
PDF Downloads 131 62 3