Seasonal Predictability of the Southern Annular Mode due to Its Association with ENSO

Eun-Pa Lim Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Eun-Pa Lim in
Current site
Google Scholar
PubMed
Close
,
Harry H. Hendon Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Harry H. Hendon in
Current site
Google Scholar
PubMed
Close
, and
Harun Rashid Centre for Australian Weather and Climate Research, Commonwealth Scientific and Industrial Research Organisation Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Harun Rashid in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Predictability of the southern annular mode (SAM) for lead times beyond 1–2 weeks has traditionally been considered to be low because the SAM is regarded as an internal mode of variability with a typical decorrelation time of about 10 days. However, the association of the SAM with El Niño–Southern Oscillation (ENSO) suggests the potential for making seasonal predictions of the SAM. In this study the authors explore seasonal predictability and the predictive skill of SAM using observations and retrospective forecasts (hindcasts) from the Australian Bureau of Meteorology dynamical seasonal forecast system [the Predictive Ocean and Atmosphere Model for Australia, version 2 (POAMA2)].

Based on the observed seasonal relationships of the SAM with tropical sea surface temperatures, two distinctive periods of high seasonal predictability are suggested: austral late autumn to winter and late spring to early summer. Predictability of the SAM in the austral cold seasons stems from the association of the SAM with warm-pool (or Modoki/central Pacific) ENSO, whereas predictability in the austral warm seasons stems from the association of the SAM with cold-tongue (or eastern Pacific) ENSO.

Using seasonal hindcasts for 1980–2010 from POAMA2, it is shown that the observed relationship between SAM and ENSO is faithfully depicted and SST variations associated with ENSO are skillfully predicted. Consequently, POAMA2 can skillfully predict the phase and amplitude of seasonal anomalies of the SAM in early summer and early winter for at least one season in advance. Zero-lead monthly forecasts of the SAM are furthermore shown to be highly skillful in almost all months, which is ascribed to predictability stemming from observed atmospheric initial conditions.

Corresponding author address: Eun-Pa Lim, CAWCR, Bureau of Meteorology, GPO Box 1289K, Melbourne, Victoria 3001, Australia. E-mail: e.lim@bom.gov.au

Abstract

Predictability of the southern annular mode (SAM) for lead times beyond 1–2 weeks has traditionally been considered to be low because the SAM is regarded as an internal mode of variability with a typical decorrelation time of about 10 days. However, the association of the SAM with El Niño–Southern Oscillation (ENSO) suggests the potential for making seasonal predictions of the SAM. In this study the authors explore seasonal predictability and the predictive skill of SAM using observations and retrospective forecasts (hindcasts) from the Australian Bureau of Meteorology dynamical seasonal forecast system [the Predictive Ocean and Atmosphere Model for Australia, version 2 (POAMA2)].

Based on the observed seasonal relationships of the SAM with tropical sea surface temperatures, two distinctive periods of high seasonal predictability are suggested: austral late autumn to winter and late spring to early summer. Predictability of the SAM in the austral cold seasons stems from the association of the SAM with warm-pool (or Modoki/central Pacific) ENSO, whereas predictability in the austral warm seasons stems from the association of the SAM with cold-tongue (or eastern Pacific) ENSO.

Using seasonal hindcasts for 1980–2010 from POAMA2, it is shown that the observed relationship between SAM and ENSO is faithfully depicted and SST variations associated with ENSO are skillfully predicted. Consequently, POAMA2 can skillfully predict the phase and amplitude of seasonal anomalies of the SAM in early summer and early winter for at least one season in advance. Zero-lead monthly forecasts of the SAM are furthermore shown to be highly skillful in almost all months, which is ascribed to predictability stemming from observed atmospheric initial conditions.

Corresponding author address: Eun-Pa Lim, CAWCR, Bureau of Meteorology, GPO Box 1289K, Melbourne, Victoria 3001, Australia. E-mail: e.lim@bom.gov.au
Save
  • Ashok, K., S. Behera, A. S. Rao, H. Weng, and T. Yamagata, 2007a: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., H. Nakamura, and T. Yamagata, 2007b: Impacts of ENSO and Indian Ocean dipole events on the Southern Hemisphere storm-track activity during austral winter. J. Climate, 20, 31473163.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., C.-Y. Tam, and W.-J. Lee, 2009: ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophys. Res. Lett., 36, L12705, doi:10.1029/2009GL038847.

    • Search Google Scholar
    • Export Citation
  • Barns, E. A., and D. L. Hartmann, 2010: Dynamical feedbacks of the southern annular mode in winter and summer. J. Atmos. Sci., 67, 23202330.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. V. Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways for ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923.

    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959.

    • Search Google Scholar
    • Export Citation
  • Codron, F., 2005: Relation between annular modes and the mean state: Southern Hemisphere summer. J. Climate, 18, 320330.

  • Colman, R., and Coauthors, 2005: BMRC Atmospheric Model (BAM) version 3.0: Comparison with mean climatology. Bureau of Meteorology Research Centre Research Rep. 108, 32 pp. [Available online at http://www.bom.gov.au/bmrc/pubs/researchreports/researchreports.htm.]

  • Deser, C., A. Philips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., D. H. Bromwich, and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 15551576.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970.

  • Gerber, E. P., and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 32963311.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., T. D. Kell, and P. D. Jones, 2006: Regional climate impacts of the southern annular mode. Geophys. Res. Lett., 33, L23704, doi:10.1029/2006GL027721.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, doi:10.1029/1999GL900003.

  • Gong, T., S. B. Feldstein, and D. Luo, 2010: The impact of ENSO on wave breaking and southern annular mode events. J. Atmos. Sci., 67, 28542870.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2007: The atmospheric general circulation and its variability. J. Meteor. Soc. Japan, 85B, 123143.

  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315.

  • Hendon, H. H., D. W. J. Thompson, and M. C. Wheeler, 2007: Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Climate, 20, 24522467.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., E.-P. Lim, G. Wang, O. Alves, and D. Hudson, 2009: Prospects for predicting two flavours of El Niño. Geophys. Res. Lett., 36, L19713, doi:10.1029/2009GL040100.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., E.-P. Lim, J. M. Arblaster, and D. L. T. Anderson, 2013: Causes and predictability of the record wet east Australian spring 2010. Climate Dyn., doi:10.1007/s00382-013-1700-5, in press.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., M. A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129.

  • Hudson, D., O. Alves, H. H. Hendon, and G. Wang, 2011: The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Climate Dyn., 36, 11551171.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary data set for the Community Atmosphere Model. J. Climate, 21, 51455153.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632.

  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1990: The role of transient eddies in low-frequency zonal variations of the Southern Hemisphere circulation. Tellus, 42A, 4150.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., P. Hope, and D. Jones, 1996: Decadal variations of the Southern Hemisphere circulation. Int. J. Climatol., 16, 723738.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1988: Indices of the Southern Hemisphere zonal wind. J. Climate, 1, 183194.

  • Kidson, J. W., and M. R. Sinclair, 1995: The influence of persistent anomalies on Southern Hemisphere storm tracks. J. Climate, 8, 19381950.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., D. M. W. Frierson, J. A. Renwick, and G. K. Vallis, 2010: Observations, simulations, and dynamics of jet stream variability and annular modes. J. Climate, 23, 61866199.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-K., and S. Lee, 2004: The wave–zonal mean flow interaction in the Southern Hemisphere. J. Atmos. Sci., 61, 10551067.

  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and H.-K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 14901503.

  • L'Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and I. Simmonds, 2007: Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. J. Climate, 20, 26752690.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., H. H. Hendon, O. Alves, Y. Yin, M. Zhao, G. Wang, D. Hudson, and G. Liu, 2009a: Impact of SST bias correction on prediction of ENSO and Australian winter rainfall. CAWCR Research Letters, No. 3, CAWCR, Melbourne, Victoria, Australia, 22–29.

  • Lim, E.-P., H. H. Hendon, D. Hudson, G. Wang, and O. Alves, 2009b: Dynamical forecast of inter–El Niño variations of tropical SST and Australian spring rainfall. Mon. Wea. Rev., 137, 37963810.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., H. H. Hendon, O. Alves, Y. Yin, G. Wang, D. Hudson, M. Zhao, and L. Shi, 2010: Dynamical seasonal prediction of tropical Indo-Pacific SST and Australian rainfall with improved ocean initial conditions. CAWCR Tech. Rep. 032, 26 pp.

  • Lim, E.-P., H. H. Hendon, D. L. T. Anderson, and A. Charles, 2011: Dynamical, statistical–dynamical, and multimodel ensemble forecasts of Australian spring season rainfall. Mon. Wea. Rev., 139, 958975.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136.

  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327.

  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., D. Hudson, M. C. Wheeler, H. H. Hendon, and O. Alves, 2012: Simulation and prediction of the southern annular mode and its influence on Australian intra-seasonal climate in POAMA. Climate Dyn., 38, 24832502.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143.

  • Meneghini, B., I. Simmonds, and I. Smith, 2007: Association between Australian rainfall and the southern annular mode. Int. J. Climatol., 27, 109121.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17, 18281844.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., A. Schiller, D. A. Griffin, and G. B. Brassington, 2005: Ensemble data assimilation for an eddy-resolving ocean model of the Australian region. Quart. J. Roy. Meteor. Soc., 131, 33013311.

    • Search Google Scholar
    • Export Citation
  • Okely, P., O. Alves, D. Hudson, and Y. Yin, 2011: Towards coupled data assimilation: Coupled covariance structures. CAWCR Research Letters, No. 7, CAWCR, Melbourne, Victoria, Australia, 4–9.

  • Oort, A. H., and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9, 27512767.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1996: MOM2: Documentation, user's guide and reference manual. GFDL Ocean Group Tech. Rep. 3.2, 328 pp.

  • Rashid, H. A., and I. Simmonds, 2004: Eddy–zonal flow interactions associated with the Southern Hemisphere annular mode: Results from NCEP–DOE reanalysis and a quasi-linear model. J. Atmos. Sci., 61, 873888.

    • Search Google Scholar
    • Export Citation
  • Rashid, H. A., and I. Simmonds, 2005: Southern Hemisphere annular mode variability and the role of optimal nonmodal growth. J. Atmos. Sci., 62, 19471961.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res.,108, 4407, doi:10.1029/2002JD002670.

  • Reason, C. J. C., and M. Rouault, 2005: Links between the Antarctic Oscillation and winter rainfall over western South Africa. Geophys. Res. Lett., 32, L07705, doi:10.1029/2005GL022419.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57, 415422.

  • Roff, G., D. W. J. Thompson, and H. Hendon, 2011: Does increasing model stratospheric resolution improve extended-range forecast skill? Geophys. Res. Lett., 38, L05809, doi:10.1029/2010GL046515.

    • Search Google Scholar
    • Export Citation
  • Saji, N., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., J. S. Godfrey, P. C. McIntosh, G. Meyers, N. R. Smith, O. Alves, G. Wang, and R. Fiedler, 2002: A new version of the Australian Community Ocean Model for seasonal climate prediction. CSIRO Marine Research Rep. 240, 79 pp.

  • Seager, R., N. Harnik, and Y. Kushnir, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978.

  • Sen Gupta, A., and M. H. England, 2007: Coupled ocean–atmosphere feedback in the southern annular mode. J. Climate, 20, 36773692.

  • Silvestri, G. E., and C. S. Vera, 2003: Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett., 30, 2155, doi:10.1029/2003GL018277.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2000: Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. J. Climate, 13, 873885.

    • Search Google Scholar
    • Export Citation
  • Smith, N. R., J. E. Blomley, and G. Meyers, 1991: A univariate statistical interpolation scheme for subsurface thermal analyses in the tropical oceans. Prog. Oceanogr., 28, 219256.

    • Search Google Scholar
    • Export Citation
  • Szeredi, I., and D. Karoly, 1987: The horizontal structure of monthly fluctuations of the Southern Hemisphere troposphere from station data. Aust. Meteor. Mag.,35, 119–129.

  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1979: Interannual variability of the 500-mb zonal flow in the Southern Hemisphere. Mon. Wea. Rev., 107, 15151524.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Valke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupled user guide version 2.4. CERFACS Tech. Rep. TR/CMGC/00-10, 85 pp.

  • Wang, G., and H. H. Hendon, 2007: Sensitivity of Australian rainfall to inter–El Niño variations. J. Climate, 20, 42114226.

  • Wang, G., D. Hudson, Y. Yin, O. Alves, H. Hendon, S. Langford, G. Liu, and F. Tseitkin, 2011: POAMA-2 SST skill assessment and beyond. CAWCR Research Letters, No. 6, CAWCR, Melbourne, Victoria, Australia, 40–46.

  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113129.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, 592 pp.

  • Yin, Y., O. Alves, and P. Oke, 2011: An ensemble ocean data assimilation system for seasonal prediction. Mon. Wea. Rev., 139, 786808.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and R. Yu, 2004: Sea-surface temperature induced variability of the southern annular mode in an atmospheric general circulation model. Geophys. Res. Lett., 31, L24206, doi:10.1029/2004GL021473.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 925 298 7
PDF Downloads 711 229 5