Regional Energy and Water Cycles: Transports from Ocean to Land

Kevin E. Trenberth National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Kevin E. Trenberth in
Current site
Google Scholar
PubMed
Close
and
John T. Fasullo National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by John T. Fasullo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The flows of energy and water from ocean to land are examined in the context of the land energy and water budgets, for land as a whole and for continents. Most atmospheric reanalyses have large errors of up to 15 W m−2 in the top-of-atmosphere (TOA) energy imbalance, and none include volcanic eruptions. The flow of energy from ocean to land is more reliable as it relies on analyzed wind, temperature, and moisture fields. It is examined for transports of the total, latent energy (LE), and dry static energy (DSE) to land as a whole and as zonal means. The net convergence of energy onto land is balanced by the loss of energy at TOA, measured by Clouds and the Earth’s Radiant Energy System (CERES), and again there are notable discrepancies. Only the ECMWF Interim Re-Analysis (ERA-I) is stable and plausible. Strong compensation between variations in LE and DSE transports onto land means that their sum is more stable over time, and the net transport of energy onto land is largely that associated with the hydrological cycle (LE). A more detailed examination is given of the energy and water budgets for Eurasia, North and South America, Australia, and Africa, making use of Gravity Recovery and Climate Experiment (GRACE) data for water storage on land and data on river discharge into the ocean. With ERA-I, the new land estimates for both water and energy are closer to achieving balances than in previous studies. As well as the annual means, the mean annual cycles are examined in detail along with uncertainty sampling estimates, but the main test used here is that of closure.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Kevin E. Trenberth, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: trenbert@ucar.edu

Abstract

The flows of energy and water from ocean to land are examined in the context of the land energy and water budgets, for land as a whole and for continents. Most atmospheric reanalyses have large errors of up to 15 W m−2 in the top-of-atmosphere (TOA) energy imbalance, and none include volcanic eruptions. The flow of energy from ocean to land is more reliable as it relies on analyzed wind, temperature, and moisture fields. It is examined for transports of the total, latent energy (LE), and dry static energy (DSE) to land as a whole and as zonal means. The net convergence of energy onto land is balanced by the loss of energy at TOA, measured by Clouds and the Earth’s Radiant Energy System (CERES), and again there are notable discrepancies. Only the ECMWF Interim Re-Analysis (ERA-I) is stable and plausible. Strong compensation between variations in LE and DSE transports onto land means that their sum is more stable over time, and the net transport of energy onto land is largely that associated with the hydrological cycle (LE). A more detailed examination is given of the energy and water budgets for Eurasia, North and South America, Australia, and Africa, making use of Gravity Recovery and Climate Experiment (GRACE) data for water storage on land and data on river discharge into the ocean. With ERA-I, the new land estimates for both water and energy are closer to achieving balances than in previous studies. As well as the annual means, the mean annual cycles are examined in detail along with uncertainty sampling estimates, but the main test used here is that of closure.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Kevin E. Trenberth, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: trenbert@ucar.edu
Save
  • Albergel, C., P. De Rosnay, G. Balsamo, L. Isaksen, and J. Muñoz-Sabater, 2012: Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeor., 13, 14421460.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, doi:10.1002/grl.50382.

    • Search Google Scholar
    • Export Citation
  • Boening, C., J. K. Willis, F. W. Landerer, R. S. Nerem, and J. Fasullo, 2012: The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett., 39, L19602, doi:10.1029/2012GL053055.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739.

  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. Qian, K. E. Trenberth, and J. D. Milliman, 2009: Changes in continental freshwater discharge from 1949 to 2004. J. Climate, 22, 27732791.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Derksen, C., and R. Brown, 2012: Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys. Res. Lett., 39, L19504, doi:10.1029/2012GL053387.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008a: The annual cycle of the energy budget. Part I: Global mean and land–ocean exchanges. J. Climate, 21, 22972312.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008b: The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Climate, 21, 23132325.

    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, G. J. Huffman, and S. Curtis, 2007: Tropical rainfall variability on interannual-to-interdecadal and longer time scales derived from the GPCP monthly product. J. Climate, 20, 40334046.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann, 2011: Earth’s energy imbalance and implications. Atmos. Chem. Phys., 11, 13 42113 449, doi:10.5194/acp-11-13421-2011.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Jiménez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, D02102, doi:10.1029/2010JD014545.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954.

    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and S. C. Swenson, 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., J. M. Lyman, G. C. Johnson, R. P. Allan, D. R. Doelling, T. Wong, B. J. Soden, and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, doi:10.1038/ngeo1375.

    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230.

    • Search Google Scholar
    • Export Citation
  • Pan, M., A. K. Sahoo, T. J. Troy, R. K. Vinukollu, J. Sheffield, and W. F. Wood, 2012: Multisource estimation of long-term terrestrial water budget for major global river basins. J. Climate, 25, 31913206.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., K. Hilburn, P. Hennon, and A. Becker, 2012: Precipitation [In “State of the climate in 2011”]. Bull. Amer. Meteor. Soc., 93, S26S27.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. Bosilovich, J. Chen, and T. Miller, 2011: The effect of satellite observing system changes on MERRA water and energy fluxes. J. Climate, 24, 51975217.

    • Search Google Scholar
    • Export Citation
  • Sahoo, A. K., M. Pan, T. J. Troy, R. K. Vinukollu, J. Sheffield, and E. F. Wood, 2011: Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sens. Environ., 115, 18501865.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2013: GPCC’s new land-surface precipitation climatology based on quality-controlled in-situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., doi:10.1007/s00704-013-0860-x, in press.

    • Search Google Scholar
    • Export Citation
  • Siemes, C., P. Ditmar, R. E. M. Riva, D. C. Slobbe, X. L. Liu, and H. H. Farahani, 2013: Estimation of mass change trends in the Earth's system on the basis of GRACE satellite data, with application to Greenland. J. Geod., 87, 6987, doi:10.1007/s00190-012-0580-5.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Syed, T. H., J. S. Famiglietti, and D. P. Chambers, 2009: GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J. Hydrometeor., 10, 2240.

    • Search Google Scholar
    • Export Citation
  • Syed, T. H., J. S. Famiglietti, D. P. Chambers, J. K. Willis, and K. Hilburn, 2010: Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc. Natl. Acad. Sci. USA, 42, 17 91617 921, doi:10.1073/pnas.1003292107.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, 2004: The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2009: An imperative for climate change planning: tracking Earth’s global energy. Curr. Opin. Env. Sustainability, 1, 1927, doi:10.1016/j.cosust.2009.06.001.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003a: Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate, 16, 36913705.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003b: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Climate, 16, 37063722.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Dai, 2007: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett., 34, L15702, doi:10.1029/2007GL030524.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2008: An observational estimate of ocean energy divergence. J. Phys. Oceanogr., 38, 984999.

  • Trenberth, K. E., and J. T. Fasullo, 2010: Tracking Earth’s energy. Science, 328, 316317.

  • Trenberth, K. E., and J. T. Fasullo, 2013: North American water and energy cycles. Geophys. Res. Lett., 40, 365369, doi:10.1002/grl.50107.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated water vapor. Climate Dyn., 24, 741758.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007a: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007b: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323.

  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924.

    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., H. H. G. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, doi:10.1029/2010WR009127.

    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., R. Meynadier, J. Sheffield, and E. F. Wood, 2011: Multi-model, multi-sensor estimates of global evapotranspiration: Climatology, uncertainties and trends. Hydrol. Processes, 25, 39934010.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 961 297 30
PDF Downloads 505 147 15