Identification of the Eurasian–North Pacific Multidecadal Oscillation and Its Relationship to the AMO

Ming-Ying Lee Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Ming-Ying Lee in
Current site
Google Scholar
PubMed
Close
and
Huang-Hsiung Hsu Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Search for other papers by Huang-Hsiung Hsu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A multidecadal geopotential height pattern in the upper troposphere of the extratropical Northern Hemisphere (NH) is identified in this study. This pattern is characterized by the nearly zonal symmetry of geopotential height and temperature between 35° and 65°N and the equivalent barotropic vertical structure with the largest amplitude in the upper troposphere. This pattern is named the Eurasian–Pacific multidecadal oscillation (EAPMO) to describe its multidecadal time scale and the largest amplitudes over Eurasia and the North Pacific. Although nearly extending over the entire extratropics, the EAPMO exhibits larger amplitudes over western Europe, East Asia, and the North Pacific with a zonal scale equivalent to zonal wavenumbers 4 and 5. The zonally asymmetric perturbation tends to amplify over the major mountain ranges in the region, suggesting a significant topographic influence. The EAPMO has fluctuated concurrently with the Atlantic multidecadal oscillation (AMO) at least since the beginning of the twentieth century. The numerical simulation results suggest that the EAPMO could be induced by the AMO-like sea surface temperature anomaly and strengthened regionally by topography, especially over the Asian highland region, although the amplitude was undersimulated.

This study found that the multidecadal variability of the upper-tropospheric geopotential height in the extratropical NH is much more complicated than in the tropics and the Southern Hemisphere (SH). It takes both first (warming trend) and second (multidecadal) EOFs to explain the multidecadal variability in the extratropical NH, while only the first EOF, which exhibited a warming trend, is sufficient for the tropics and SH.

Corresponding author address: Huang-Hsiung Hsu, Research Center for Environmental Changes, Academia Sinica, 128, Academia Road, Section 2, Taipei, Taiwan. E-mail: hhhsu@gate.sinica.edu.tw

Abstract

A multidecadal geopotential height pattern in the upper troposphere of the extratropical Northern Hemisphere (NH) is identified in this study. This pattern is characterized by the nearly zonal symmetry of geopotential height and temperature between 35° and 65°N and the equivalent barotropic vertical structure with the largest amplitude in the upper troposphere. This pattern is named the Eurasian–Pacific multidecadal oscillation (EAPMO) to describe its multidecadal time scale and the largest amplitudes over Eurasia and the North Pacific. Although nearly extending over the entire extratropics, the EAPMO exhibits larger amplitudes over western Europe, East Asia, and the North Pacific with a zonal scale equivalent to zonal wavenumbers 4 and 5. The zonally asymmetric perturbation tends to amplify over the major mountain ranges in the region, suggesting a significant topographic influence. The EAPMO has fluctuated concurrently with the Atlantic multidecadal oscillation (AMO) at least since the beginning of the twentieth century. The numerical simulation results suggest that the EAPMO could be induced by the AMO-like sea surface temperature anomaly and strengthened regionally by topography, especially over the Asian highland region, although the amplitude was undersimulated.

This study found that the multidecadal variability of the upper-tropospheric geopotential height in the extratropical NH is much more complicated than in the tropics and the Southern Hemisphere (SH). It takes both first (warming trend) and second (multidecadal) EOFs to explain the multidecadal variability in the extratropical NH, while only the first EOF, which exhibited a warming trend, is sufficient for the tropics and SH.

Corresponding author address: Huang-Hsiung Hsu, Research Center for Environmental Changes, Academia Sinica, 128, Academia Road, Section 2, Taipei, Taiwan. E-mail: hhhsu@gate.sinica.edu.tw
Save
  • Angell, J. K., and J. Korshover, 1978: Estimate of global temperature variations in the 100–30-mbar layer between 1958 and 1977. Mon. Wea. Rev., 106, 14221432.

    • Search Google Scholar
    • Export Citation
  • Arias, P., R. Fu, and K. Mo, 2012: Decadal variation of rainfall seasonality in the North American monsoon region and its potential causes. J. Climate, 25, 42584274.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., M. K. Tippett, and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909926.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676.

    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, and A. A. Scaife, 2006: Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett., 33, L08705, doi:10.1029/2006GL025766.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, and F. E. Kates, 1984: Worldwide marine temperature fluctuations 1856-1981. Nature, 310, 670673.

  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., 1987: Propagation of low-level circulation patterns in the vicinity of mountain ranges. Mon. Wea. Rev., 115, 18641892.

  • Hsu, H.-H., 1994: Relationship between tropical heating and global circulation: Interannual variability. J. Geophys. Res., 99 (D5), 10 47310 489.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and J. M. Wallace, 1985: Vertical structure of wintertime teleconnection patterns in Northern Hemisphere. J. Atmos. Sci., 42, 16931710.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Coauthors, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London, 454, 903993.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., and J. Matsumoto, 2004: A comparison of summer sea level pressure over east Eurasia between NCEP-NCAR Reanalysis and ERA-40 for the period 1960-99. J. Meteor. Soc. Japan, 82, 951958.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. Jónsson, and D. Wheeler, 1997: Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int. J. Climatol., 17, 14331450.

    • Search Google Scholar
    • Export Citation
  • Kerr, R., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841986.

  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North American. Science, 266, 634637.

    • Search Google Scholar
    • Export Citation
  • Lo, T.-T., and H.-H. Hsu, 2010: Change in dominant decadal modes and the late 1980s abrupt warming in the extratropical Northern Hemisphere. Atmos. Sci. Lett.,11, 210–215, doi:10.1002/asl.275.

  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • Lu, R., B. Dong, and H. Ding, 2006: Impact of the Atlantic multidecadal oscillation on the Asian summer. Geophys. Res. Lett., 33, L24701, doi:10.1029/2006GL027655.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., T. R. Carter, P. D. Jones, M. Hulme, and M. New, 2004: A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper 55, 30 pp.

  • Omrani, N.-E., N. S. Keenlyside, J. Bader, and E. Manzini, 2013: Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Climate Dyn.,doi:10.1007/s00382-013-1860-3, in press.

  • Pan, Y. H., and A. H. Oort, 1983: Global climate variations connected with sea surface temperature anomalies in the eastern equatorial Pacific Ocean for the 1958–70 period. Mon. Wea. Rev., 111, 12441258.

    • Search Google Scholar
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, doi:10.1029/2007JD008411.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp.

  • Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 37713791.

    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., and H. C. Willett, 1948: The circulation of the upper troposphere and lower stratosphere. Science, 108, 643652.

  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32, L18715, doi:10.1029/2005GL023226.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891907.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 (9), 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, doi:10.1029/2011GL048712.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wallace, J. M., and H.-H. Hsu, 1985: Another look at the index cycle. Tellus, 37A, 478486.

  • Wei, W., and G. Lohmann, 2012: Simulated Atlantic multidecadal oscillation during the Holocene. J. Climate, 25, 69897002.

  • Wu, Z., N. E. Huang, S. R. Long, and C. K. Peng, 2007: On the trend, detrending and variability of nonlinear and non-stationary time series. Proc. Natl. Acad. Sci. USA, 104, 14 88914 894.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759773, doi:10.1007/s00382-011-1128-8.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7, 17191736.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillation on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on the North Pacific climate variability. Geophys. Res. Lett., 34, L23078, doi:10.1029/2007GL031601.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., T. L. Delworth, and I. M. Held, 2007: Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys. Res. Lett., 34, L02709, doi:10.1029/2006GL028683.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020.

  • Zhou, J., and K. Tung, 2013: Deducing multidecadal anthropogenic global warming trends using multiple regression analysis. J. Atmos. Sci., 70, 3–8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 118 21
PDF Downloads 109 55 14