• Borge, R., , V. Alexandrov, , J. J. del Vas, , J. Lumbreras, , and R. Encarnación, 2008: A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos. Environ., 42, 85608574.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., , and D. J. Karoly, 2009: Precipitation simulations using WRF as a nested regional climate model. J. Appl. Meteor. Climatol., 48, 21522159.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., , H.-N. S. Chin, , D. C. Bader, , and B. Govindasamy, 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95, 499521, doi:10.1007/s10584-009-9583-5.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., , and O. B. Christensen, 2007: A Summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 730, doi:10.1007/s10584-006-9210-7.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM3.0). NCAR Tech. Note TN-464+STR, 214 pp.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ek, M., , and L. Mahrt, 1991: OSU 1-D PBL model user’s guide, version 1.04. Department of Atmospheric Sciences, Oregon State University, 120 pp.

  • Evans, J. P., , and M. F. McCabe, 2010: Regional climate simulation over Australia’s Murray-Darling basin: A multi-temporal assessment. J. Geophys. Res., 115, D14114, doi:10.1029/2010JD013816.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E. S., , S. Bastin, , and S. Janicot, 2010: Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF. Climate Dyn., 36, 10831105, doi:10.1007/s00382-010-0785-3.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., , N. Hofstra, , A. M. G. Klein Tank, , E. J. Klok, , P. D. Jones, , and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , J. Dudhia, , and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2007: An inter-comparison of regional climate models for Europe: Model performance in present-day climate. Climatic Change, 81, 3152, doi:10.1007/s10584-006-9213-4.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., and Coauthors, 2011: An evaluation of five WRF-ARW microphysics schemes using synthetic GOES imagery for an atmospheric river event affecting the California coast. J. Hydrometeor., 12, 618633.

    • Search Google Scholar
    • Export Citation
  • Jin, J., , N. L. Miller, , and N. Schlegel, 2010: Sensitivity study of four land surface schemes in the WRF model. Adv. Meteor., 2010, 167436, doi:10.1155/2010/167436.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Mercader, J., , B. Codina, , A. Sairouni, , and J. Cunillera, 2010: Results of the meteorological model WRF-ARW over Catalonia, using different parameterizations of convection and cloud microphysics. Tethys, 7, 7586.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., , and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120, 326344.

    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., , F. J. Mulligan, , and R. Fealy, 2011: Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. Int. J. Climatol., 31, 545557, doi:10.1002/joc.2098.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2004: An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., , A. J. Pitman, , N. J. Holbrook, , and J. McAneney, 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20, 43564376.

    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., , G. Hoogenboom, , and T. G. Smirnova, 2011: Role of land surface parameterizations on modeling cold-pooling events and low-level jets. Atmos. Res., 99, 147161.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311.

  • Salathé, E. P., Jr., , L. R. Leung, , Y. Qian, , and Y. Zhang, 2010: Regional climate model projections for the State of Washington. Climatic Change, 102, 5175, doi:10.1007/s10584-010-9849-y.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , and I. Simmonds, 2010: Erroneous Arctic temperature trends in the ERA-40 reanalysis: A closer look. J. Climate, 24, 26202627.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN–475+STR, 113 pp.

  • Smirnova, T. G., , J. M. Brown, , and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 18701884.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., , J. M. Brown, , S. G. Benjamin, , and D. Kim, 2000: Parameterization of cold-season processes in the MAPS land surface scheme. J. Geophys. Res., 105, 40774086.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , Z. Chen, , M. Marquis, , K. B. Averyt, , M. Tignor, , and H. L. Miller, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192.

  • Troy, T. J., , and E. F. Wood, 2009: Comparison and validation of gridded radiation products across northern Eurasia. Environ. Res. Lett., 4, 045008, doi:10.1088/1748-9326/4/4/045008.

    • Search Google Scholar
    • Export Citation
  • van den Besselaar, E. J. M., , M. R. Haylock, , G. van der Schrier, , and A. M. G. Klein Tank, 2011: A European daily high-resolution observational gridded data set of sea level pressure. J. Geophys. Res., 116, D11110, doi:10.1029/2010JD015468.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125, 252278.

    • Search Google Scholar
    • Export Citation
  • Yu, E.-T., , H.-J. Wang, , and J.-Q. Sun, 2010: A quick report on a dynamical downscaling simulation over China using the nested model. Atmos. Oceanic Sci. Lett., 3, 325329.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , J. S. Kain, , J. M. Fritsch, , and K. Gao, 1994: Comments on “Parameterization of convective precipitation in mesoscale numerical models: A critical review.” Mon. Wea. Rev., 122, 22222231.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , V. Duliere, , P. W. Mote, , and E. P. Salathé, 2009: Evaluation of WRF and HadRM mesoscale climate simulations over the U.S. Pacific Northwest. J. Climate, 22, 55115526.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 79 79 29
PDF Downloads 78 78 21

Evaluation of the Sensitivity of the Weather Research and Forecasting Model to Parameterization Schemes for Regional Climates of Europe over the Period 1990–95

View More View Less
  • 1 Department of Physics, University of Oxford, Oxford, United Kingdom, and ICARUS, Department of Geography, National University of Ireland Maynooth, Kildare, Ireland
  • 2 Department of Experimental Physics, National University of Ireland Maynooth, Kildare, Ireland
  • 3 Department of Geography, National University of Ireland Maynooth, Kildare, Ireland
© Get Permissions
Restricted access

Abstract

The Weather Research and Forecasting model (WRF) is used to downscale interim ECMWF Re-Analysis (ERA-Interim) data for the climate over Europe for the period 1990–95 with grid spacing of 0.44° for 12 combinations of physical parameterizations. Two longwave radiation schemes, two land surface models (LSMs), two microphysics schemes, and two planetary boundary layer (PBL) schemes have been investigated while the remaining physics schemes were unchanged. WRF simulations are compared with Ensemble-Based Predictions of Climate Changes and their Impacts (ENSEMBLES) observations gridded dataset (E-OBS) for surface air temperatures (T2), precipitation, and mean sea level pressure (MSLP) in eight subregions within the model domain to assess the performance of the different parameterizations on widely varying regional climates. This work shows that T2 is modeled well by WRF with high correlation coefficients (0.8 < R < 0.95) and biases less than 4°C. T2 shows greatest sensitivity to land surface models, some sensitivity to longwave radiation schemes, and less sensitivity to microphysics and PBL schemes. Precipitation is not well modeled by WRF with low correlation coefficients (0.1 < R < 0.3) and high root-mean-square differences (RMSDs; 8–9 mm day−1). Precipitation shows sensitivity to LSMs in summer. No significant bias has been observed in the MSLP modeled by WRF. Correlation coefficients are typically in the range 0.7 < R < 0.8 while RMSDs are in the range 6–10 hPa. MSLP output is sensitive to longwave radiation scheme in summer but is relatively insensitive to either microphysics or the choice of LSM. The optimum combination of parameterizations for all three state variables examined is strongly dependent on subregion and demonstrates the need to carefully select parameterization combinations when attempting to use WRF as a regional climate model.

Corresponding author address: P. A. Mooney, ICARUS, Department of Geography, National University of Ireland Maynooth, Kildare, Ireland. E-mail: priscilla.a.mooney@nuim.ie

Abstract

The Weather Research and Forecasting model (WRF) is used to downscale interim ECMWF Re-Analysis (ERA-Interim) data for the climate over Europe for the period 1990–95 with grid spacing of 0.44° for 12 combinations of physical parameterizations. Two longwave radiation schemes, two land surface models (LSMs), two microphysics schemes, and two planetary boundary layer (PBL) schemes have been investigated while the remaining physics schemes were unchanged. WRF simulations are compared with Ensemble-Based Predictions of Climate Changes and their Impacts (ENSEMBLES) observations gridded dataset (E-OBS) for surface air temperatures (T2), precipitation, and mean sea level pressure (MSLP) in eight subregions within the model domain to assess the performance of the different parameterizations on widely varying regional climates. This work shows that T2 is modeled well by WRF with high correlation coefficients (0.8 < R < 0.95) and biases less than 4°C. T2 shows greatest sensitivity to land surface models, some sensitivity to longwave radiation schemes, and less sensitivity to microphysics and PBL schemes. Precipitation is not well modeled by WRF with low correlation coefficients (0.1 < R < 0.3) and high root-mean-square differences (RMSDs; 8–9 mm day−1). Precipitation shows sensitivity to LSMs in summer. No significant bias has been observed in the MSLP modeled by WRF. Correlation coefficients are typically in the range 0.7 < R < 0.8 while RMSDs are in the range 6–10 hPa. MSLP output is sensitive to longwave radiation scheme in summer but is relatively insensitive to either microphysics or the choice of LSM. The optimum combination of parameterizations for all three state variables examined is strongly dependent on subregion and demonstrates the need to carefully select parameterization combinations when attempting to use WRF as a regional climate model.

Corresponding author address: P. A. Mooney, ICARUS, Department of Geography, National University of Ireland Maynooth, Kildare, Ireland. E-mail: priscilla.a.mooney@nuim.ie
Save