Hadley Circulation Response to Orbital Precession. Part I: Aquaplanets

Timothy M. Merlis Princeton University, and Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Timothy M. Merlis in
Current site
Google Scholar
PubMed
Close
,
Tapio Schneider California Institute of Technology, Pasadena, California

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
,
Simona Bordoni California Institute of Technology, Pasadena, California

Search for other papers by Simona Bordoni in
Current site
Google Scholar
PubMed
Close
, and
Ian Eisenman Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Ian Eisenman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The response of the monsoonal and annual-mean Hadley circulation to orbital precession is examined in an idealized atmospheric general circulation model with an aquaplanet slab-ocean lower boundary. Contrary to expectations, the simulated monsoonal Hadley circulation is weaker when perihelion occurs at the summer solstice than when aphelion occurs at the summer solstice. The angular momentum balance and energy balance are examined to understand the mechanisms that produce this result. That the summer with stronger insolation has a weaker circulation is the result of an increase in the atmosphere’s energetic stratification, the gross moist stability, which increases more than the amount required to balance the change in atmospheric energy flux divergence necessitated by the change in top-of-atmosphere net radiation. The solstice-season changes result in annual-mean Hadley circulation changes (e.g., changes in circulation strength).

Corresponding author address: Timothy M. Merlis, Princeton University, and Geophysical Fluid Dynamics Laboratory, Jadwin Hall, Princeton, NJ 08544. E-mail: tmerlis@princeton.edu

Abstract

The response of the monsoonal and annual-mean Hadley circulation to orbital precession is examined in an idealized atmospheric general circulation model with an aquaplanet slab-ocean lower boundary. Contrary to expectations, the simulated monsoonal Hadley circulation is weaker when perihelion occurs at the summer solstice than when aphelion occurs at the summer solstice. The angular momentum balance and energy balance are examined to understand the mechanisms that produce this result. That the summer with stronger insolation has a weaker circulation is the result of an increase in the atmosphere’s energetic stratification, the gross moist stability, which increases more than the amount required to balance the change in atmospheric energy flux divergence necessitated by the change in top-of-atmosphere net radiation. The solstice-season changes result in annual-mean Hadley circulation changes (e.g., changes in circulation strength).

Corresponding author address: Timothy M. Merlis, Princeton University, and Geophysical Fluid Dynamics Laboratory, Jadwin Hall, Princeton, NJ 08544. E-mail: tmerlis@princeton.edu
Save
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Ashkenazy, Y., I. Eisenman, H. Gildor, and E. Tziperman, 2010: The effect of Milankovitch variations in insolation on equatorial seasonality. J. Climate, 23, 61336142.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., 2007: On the role of eddies in monsoonal circulations: Observations and theory. Ph.D. dissertation, University of California, Los Angeles, 195 pp.

  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515519.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and E. Black, 2010: Some physical drivers of changes in the winter storm tracks over the North Atlantic and Mediterranean during the Holocene. Philos. Trans. Roy. Soc. London, 368A, 51855223.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., A. Hall, and A. J. Broccoli, 2004: The importance of precessional signals in the tropical climate. Climate Dyn., 22, 327341.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Held, I. M., 2001a: The general circulation of the atmosphere. Proc. 2000 Program in Geophysical Fluid Dynamics, Woods Hole Oceanographic Institution Tech. Rep. WHOI-2001-03, R. Salmon, Ed., Woods Hole Oceanographic Institution, 198 pp. [Available online at http://hdl.handle.net/1912/15.]

  • Held, I. M., 2001b: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533.

    • Search Google Scholar
    • Export Citation
  • Herweijer, C., R. Seager, M. Winton, and A. Clement, 2005: Why ocean heat transport warms the global mean climate. Tellus, 57A, 662675.

    • Search Google Scholar
    • Export Citation
  • Joussaume, S., and P. Braconnot, 1997: Sensitivity of paleoclimate simulation results to season definitions. J. Geophys. Res., 102 (D2), 19431956.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827.

    • Search Google Scholar
    • Export Citation
  • Khon, V. C., W. Park, M. Latif, I. I. Mokhov, and B. Schneider, 2010: Response of the hydrological cycle to orbital and greenhouse gas forcing. Geophys. Res. Lett.,37, L19705, doi:10.1029/2010GL044377.

  • Kutzbach, J., 1981: Monsoon climate of the early Holocene: Climate experiment with the Earth’s orbital parameters for 9000 years ago. Science, 214, 5961.

    • Search Google Scholar
    • Export Citation
  • Levine, X. J., and T. Schneider, 2011: Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J. Atmos. Sci., 68, 769783.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., and Coauthors, 2008: Comparisons of satellites liquid water estimates to ECMWF and GMAO analyses, 20th century IPCC AR4 climate simulations, and GCM simulations. Geophys. Res. Lett.,35, L19710, doi:10.1029/2008GL035427.

  • Lindzen, R. S., and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., 2012: The general circulation of the tropical atmosphere and climate changes. Ph.D. dissertation, California Institute of Technology, 213 pp. [Available online at http://resolver.caltech.edu/CaltechTHESIS:07012011-191902511.]

  • Merlis, T. M., and T. Schneider, 2010: Atmospheric dynamics of Earth-like tidally locked aquaplanets. J. Adv. Model. Earth Syst.,2, 13, doi:10.3894/JAMES.2010.2.13.

  • Merlis, T. M., and T. Schneider, 2011: Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. J. Climate, 24, 47574768.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013a: Hadley circulation response to orbital precession. Part II: Subtropical continent. J. Climate, 26, 754771.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013b: The tropical precipitation response to orbital precession. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 267–301.

  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832.

    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. A. Plumb, 2007: Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci., 64, 14171430.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. Sessions, A. H. Sobel, and Z. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst.,1, 9, doi:10.3894/JAMES.2009.1.9.

  • Ruddiman, W. F., 2008: Earth’s Climate: Past and Future. 2nd ed. W. H. Freeman and Company, 388 pp.

  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688.

  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915934.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2008: Scaling laws and regime transitions of macroturbulence in dry atmospheres. J. Atmos. Sci., 65, 21532173.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., 2007: Simple models of ensemble-averaged tropical precipitation and surface wind, given the sea surface temperature. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 219–251.

  • Sobel, A. H., and S. J. Camargo, 2011: Projected future seasonal changes in tropical summer climate. J. Climate, 24, 473487.

  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and J. Fasullo, 2003: Monsoon: Dynamical theory. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Curry, and J. A. Pyle, Eds., Academic Press, 1370–1386.