A Pseudoproxy Evaluation of Bayesian Hierarchical Modeling and Canonical Correlation Analysis for Climate Field Reconstructions over Europe

Johannes P. Werner Department of Geography, Justus-Liebig-University, Giessen, Germany

Search for other papers by Johannes P. Werner in
Current site
Google Scholar
PubMed
Close
,
Juerg Luterbacher Department of Geography, Justus-Liebig-University, Giessen, Germany

Search for other papers by Juerg Luterbacher in
Current site
Google Scholar
PubMed
Close
, and
Jason E. Smerdon Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Jason E. Smerdon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A pseudoproxy comparison is presented for two statistical methods used to derive annual climate field reconstructions (CFRs) for Europe. The employed methods use the canonical correlation analysis (CCA) procedure presented by Smerdon et al. and the Bayesian hierarchical model (BHM) method adopted from Tingley and Huybers. Pseudoproxy experiments (PPEs) are constructed from modeled temperature data sampled from the 1250-yr paleo-run of the NCAR Community Climate System Model (CCSM) version 1.4 model by Ammann et al. Pseudoproxies approximate the distribution of the multiproxy network used by Mann et al. over the European region of interest. Gaussian white noise is added to the temperature data to mimic the combined signal and noise properties of real-world proxies. Results indicate that, while both methods perform well in areas with good proxy coverage, the BHM method outperforms the CCA method across the entire field and additionally returns objective error estimates.

Lamont-Doherty Earth Observatory Contribution Number 7621.

Corresponding author address: Johannes P. Werner, Department of Geography, Climatology, Climate Dynamics and Climate Change Justus-Liebig-University, Senckenbergstrasse 1, D-35390 Giessen, Germany. E-mail: johannes.werner@geogr.uni-giessen.de

Abstract

A pseudoproxy comparison is presented for two statistical methods used to derive annual climate field reconstructions (CFRs) for Europe. The employed methods use the canonical correlation analysis (CCA) procedure presented by Smerdon et al. and the Bayesian hierarchical model (BHM) method adopted from Tingley and Huybers. Pseudoproxy experiments (PPEs) are constructed from modeled temperature data sampled from the 1250-yr paleo-run of the NCAR Community Climate System Model (CCSM) version 1.4 model by Ammann et al. Pseudoproxies approximate the distribution of the multiproxy network used by Mann et al. over the European region of interest. Gaussian white noise is added to the temperature data to mimic the combined signal and noise properties of real-world proxies. Results indicate that, while both methods perform well in areas with good proxy coverage, the BHM method outperforms the CCA method across the entire field and additionally returns objective error estimates.

Lamont-Doherty Earth Observatory Contribution Number 7621.

Corresponding author address: Johannes P. Werner, Department of Geography, Climatology, Climate Dynamics and Climate Change Justus-Liebig-University, Senckenbergstrasse 1, D-35390 Giessen, Germany. E-mail: johannes.werner@geogr.uni-giessen.de
Save
  • Ammann, C. M., F. Joos, D. S. Schimel, B. L. Otto-Bliesner, and R. A. Tomas, 2007: Solar influence on climate during the past millennium: Results from transient simulations with the NCAR climate system model. Proc. Natl. Acad. Sci. USA,104, 3713–3718.

  • Anishchenko, V., V. Astakhov, A. Neiman, T. Vadisova, and L. Shimansky-Geier, 2002: Nonlinear Dynamics of Chaotic and Stochastic Systems. 1st ed. Springer-Verlag, 374 pp.

  • Büntgen, U., and Coauthors, 2011: 2500 years of European climate variability and human susceptibility. Science, 331, 578582.

  • Bürger, G., I. Fast, and U. Cubasch, 2006: Climate reconstruction by regression—32 variations on a theme. Tellus, 58A, 227235.

  • Christiansen, B., T. Schmith, and P. Thejll, 2009: A surrogate ensemble study of climate reconstruction methods: Stochasticity and robustness. J. Climate, 22, 951976.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., K. R. Briffa, and P. D. Jones, 1994: Spatial regression methods in dendroclimatology: A review and comparison of two techniques. Int. J. Climatol., 14, 379402.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland, 1999: Drought reconstructions for the continental United States. J. Climate, 12, 11451162.

    • Search Google Scholar
    • Export Citation
  • Cranz, D., 1770: Historie von Grönland: Enthaltend die Beschreibung des Landes und der Einwohner ec., insbesondere die Geschichte der dortigen Mission der Evangelischen Brüder zu Neu-Herrnhut und Lichtenfels: mit 8 Kupfertafeln und einem Register. 2nd ed. Heinrich Detlef Ebers, Barby and Weidmanns Erben und Reich, 1128 pp.

  • D’Arrigo, R. D., R. Allan, R. Wilson, J. Palmer, J. Sakulich, J. E. Smerdon, S. Bijaksana, and L. O. Ngkoimani, 2008: Pacific and Indian Ocean climate signals in a tree-ring record of Java monsoon drought. Int. J. Climatol., 28, 18891901, doi:10.1002/joc.1679.

    • Search Google Scholar
    • Export Citation
  • Einstein, A., 1905: Über die von der Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten supendierten Teilchen. Ann. Phys., 17, 549560.

    • Search Google Scholar
    • Export Citation
  • Einstein, A., 1906: Zur Theorie der Brownschen Bewegung. Ann. Phys., 19, 371381.

  • Esper, J., D. C. Frank, R. J. S. Wilson, and K. R. Briffa, 2005: Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys. Res. Lett., 32, L07711, doi:10.1029/2004GL021236.

    • Search Google Scholar
    • Export Citation
  • Esper, J., and Coauthors, 2012: Orbital forcing of tree-ring data. Nat. Climate Change, 2, 862–866, doi:10.1038/NCLIMATE1589.

  • Evans, M. N., B. K. Reichert, A. Kaplan, K. J. Anchukaitis, E. A. Vaganov, M. K. Hughes, and M. A. Cane, 2006: A forward modeling approach to paleoclimatic interpretation of tree-ring data. J. Geophys. Res.,111, G03008, doi:10.1029/2006JG000166.

    • Search Google Scholar
    • Export Citation
  • Gardiner, C. W., 1990: Handbook of Stochastic Methods. 2nd ed. Springer-Verlag, 447 pp.

  • Gelman, A., 2006: Prior distributions for variance parameters in hierarchical models. Bayesian Anal., 1, 515533.

  • Gelman, A., J. Carlin, H. Stern, and D. Rubin, 2003: Bayesian Data Analysis. 2nd ed. Chapman & Hall, 668 pp.

  • Gómez-Navarro, J. J., J. P. Montávez, S. Jerez, P. Jiménez-Guerrero, R. Lorente-Plazas, J. F. González-Rouco, and E. Zorita, 2011: A regional climate simulation over the Iberian Peninsula for the last millennium. Climate Past, 7, 451472, doi:10.5194/cp-7-451-2011.

    • Search Google Scholar
    • Export Citation
  • González-Rouco, F., H. von Storch, and E. Zorita, 2003: Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years. Geophys. Res. Lett., 30, 2116, doi:10.1029/2003GL018264.

    • Search Google Scholar
    • Export Citation
  • González-Rouco, F., H. Beltrami, E. Zorita, and H. Von Storch, 2006: Simulation and inversion of borehole temperature profiles in surrogate climates: Spatial distribution and surface coupling. Geophys. Res. Lett., 33, L01703, doi:10.1029/2005GL024693.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., E. Crespin, A. de Montety, M. Mann, H. Renssen, and A. Timmermann, 2010: Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J. Geophys. Res.,115, D09108, doi:10.1029/2009JD012737.

  • Guiot, J., A. Nicault, C. Rathgeber, J. L. Edouard, E. Guibal, G. Pichard, and C. Till, 2005: Last-millennium summer-temperature variations in western Europe based on proxy data. Holocene, 15, 489500.

    • Search Google Scholar
    • Export Citation
  • Guiot, J., and Coauthors, 2010: Growing season temperatures in Europe and climate forcings over the past 1400 years. PLoS ONE,5, e9972, doi:10.1371/journal.pone.0009972.

  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28, 473485.

  • Hegerl, G. C., T. J. Crowley, M. Allen, W. T. Hyde, H. N. Pollack, J. Smerdon, and E. Zorita, 2007: Detection of human influence on a new, validated 1500-year temperature reconstruction. J. Climate, 20, 650666.

    • Search Google Scholar
    • Export Citation
  • Jansen, E. J., and Coauthors, 2007: Palaeoclimate. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 433–497.

  • Jones, P. D., M. New, D. Parker, S. Martin, and I. Rigor, 1999: Surface air temperature and its changes over the last 150 years. Rev. Geophys., 37, 173199.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and Coauthors, 2009: High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. Holocene, 19, 3–49.

    • Search Google Scholar
    • Export Citation
  • Just, W., H. Kantz, C. Rödenbeck, and M. Helm, 2001: Stochastic modelling: Replacing fast degrees of freedom by noise. J. Phys.,34A, 3199, doi:10.1088/0305-4470/34/15/302.

  • Just, W., H. Kantz, M. Ragwitz, and F. Schmüser, 2003: Nonequilibrium physics meets time series analysis: Measuring probability currents from data. Europhys. Lett., 62, 2834.

    • Search Google Scholar
    • Export Citation
  • Kantz, H., W. Just, N. Baba, K. Gelfert, and A. Riegert, 2004: Fast chaos versus white noise: Entropy analysis and a Fokker–Planck model for the slow dynamics. Physica D,187, 200–213, doi:10.1016/j.physd.2003.09.006.

  • Küttel, M., J. Luterbacher, E. Zorita, E. Xoplaki, N. Riedwyl, and H. Wanner, 2007: Testing a European winter surface temperature reconstruction in a surrogate climate. Geophys. Res. Lett., 34, L07710, doi:10.1029/2006GL027907.

    • Search Google Scholar
    • Export Citation
  • Küttel, M., and Coauthors, 2009: The importance of ship log data: Reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750. Climate Dyn., 34, 11151128, doi:10.1007/s00382-009-0577-9.

    • Search Google Scholar
    • Export Citation
  • Küttel, M., J. Luterbacher, and H. Wanner, 2010: Multidecadal changes in winter circulation–climate relationship in Europe: Frequency variations, within-type modifications, and long-term trends. Climate Dyn., 36, 957972, doi:10.1007/s00382-009-0737-y.

    • Search Google Scholar
    • Export Citation
  • Lee, T. C. K., F. W. Zwiers, and M. Tsao, 2008: Evaluation of proxy-based millennial reconstruction methods. Climate Dyn., 31, 263281.

    • Search Google Scholar
    • Export Citation
  • Li, B., D. Nychka, and C. Ammann, 2010: The value of multiproxy reconstruction of past climate. J. Amer. Stat. Assoc., 105, 883895.

  • Loewe, F., 1937: A period of warm winters in western Greenland and the temperature see-saw between western Greenland and central Europe. Quart. J. Roy. Meteor. Soc., 63, 365372.

    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., C. Schmutz, D. Gyalistras, E. Xoplaki, and H. Wanner, 1999: Reconstruction of monthly NAO and EU indices back to AD 1675. Geophys. Res. Lett., 26, 27452748.

    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., and Coauthors, 2000: Monthly mean pressure reconstruction over Europe for the Late Maunder Minimum period. Int. J. Climatol., 20, 10491066.

    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., and Coauthors, 2002: Reconstruction of sea level pressure fields over the eastern North Atlantic and Europe back to 1500. Climate Dyn., 18, 545561.

    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., D. Dietrich, E. Xoplaki, M. Grosjean, and H. Wanner, 2004: European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303, 14991503.

    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., M. A. Liniger, A. Menzel, N. Estrella, P. M. Della-Marta, C. Pfister, T. Rutishauser, and E. Xoplaki, 2007: Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phenological impacts. Geophys. Res. Lett.,34, L12704, doi:10.1029/2007GL029951.

  • Luterbacher, J., and Coauthors, 2010a: Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: Results and insights from instrumental data, documentary evidence and coupled climate models. Climatic Change, 101, 201234.

    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., and Coauthors, 2010b: Climate change in Poland in the past centuries and its relationship to European climate: Evidence from reconstructions and coupled climate models. The Polish Climate in the European Context: A Historical Overview, R. Przybylak et al., Eds., Springer, 3–39.

  • Mann, M. E., and S. Rutherford, 2002: Climate reconstruction using ‘pseudoproxies.’ Geophys. Res. Lett., 29, 1501, doi:10.1029/2001GL014554.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., R. S. Bradley, and M. K. Hughes, 1998: Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779787.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., S. Rutherford, E. Wahl, and C. Ammann, 2007: Robustness of proxy-based climate field reconstruction methods. J. Geophys. Res.,112, D12109, doi:10.1029/2006JD008272.

  • Newman, L., T. Kiefer, B. Otto-Bliesner, and H. Wanner, 2010: The science and strategy of the Past Global Changes (PAGES) project. Curr. Opin. Environ. Sustainability,2, 193–201, doi:10.1016/j.cosust.2010.04.004.

  • North, G., and Coauthors, 2006: Surface Temperature Reconstructions for the Last 2,000 Years. The National Academies Press, 145 pp.

  • Ohlwein, C., and E. Wahl, 2012: Review of probabilistic pollen-climate transfer methods. Quat. Sci. Rev.,31, 17–29, doi:10.1016/j.quascirev.2011.11.002.

  • Pauling, A., J. Luterbacher, and H. Wanner, 2003: Evaluation of proxies for European and North Atlantic temperature field reconstructions. Geophys. Res. Lett., 30, 1787, doi:10.1029/2003GL017589.

    • Search Google Scholar
    • Export Citation
  • Pauling, A., J. Luterbacher, C. Casty, and H. Wanner, 2006: 500 years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Climate Dyn., 26, 307405.

    • Search Google Scholar
    • Export Citation
  • Riedwyl, N., M. Küttel, J. Luterbacher, and H. Wanner, 2009: Comparison of climate field reconstruction techniques: Application to Europe. Climate Dyn., 32, 381395.

    • Search Google Scholar
    • Export Citation
  • Risken, H., 1989: The Fokker–Planck Equation: Methods of Solution and Applications. Springer-Verlag, 472 pp.

  • Rutherford, S., M. Mann, E. Wahl, and A. C., 2008: Reply to comment by Jason E. Smerdon et al. on “Robustness of proxy-based climate field reconstruction methods.” J. Geophys. Res., 113, D18107, doi:10.1029/2008JD009964.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2011: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev., 4, 3345, doi:10.5194/gmd-4-33-2011.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., 2012: Climate models as a test bed for climate reconstruction methods: Pseudoproxy experiments. WIREs Climate Change, 3, 6377, doi:10.1002/wcc.149.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., A. Kaplan, and D. Chang, 2008: On the origin of the standardization sensitivity in RegEM climate field reconstructions. J. Climate, 21, 67106723.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., A. Kaplan, and D. E. Amrhein, 2010a: Erroneous model field representations in multiple pseudoproxy studies: Corrections and implications. J. Climate, 23, 55485554.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., A. Kaplan, D. Chang, and M. N. Evans, 2010b: A pseudoproxy evaluation of the CCA and RegEM methods for reconstructing climate fields of the last millennium. J. Climate, 23, 48564880.

    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., A. Kaplan, E. Zorita, J. F. González-Rouco, and M. N. Evans, 2011: Spatial performance of four climate field reconstruction methods targeting the Common Era. Geophys. Res. Lett.,38, L11705, doi:10.1029/2011GL047372.

  • Stemler, T., J. P. Werner, H. Benner, and W. Just, 2007: Stochastic modeling of experimental chaotic time series. Phys. Rev. Lett.,98, 044102, doi:10.1103/PhysRevLett.98.044102.

  • Taylor, K., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106 D7 71837192.

  • Thompson, D. M., T. R. Ault, M. N. Evans, J. E. Cole, and J. Emile-Geay, 2011: Comparison of observed and simulated tropical climate trends using a forward model of coral δ18O. Geophys. Res. Lett.,38, L14706, doi:10.1029/2011GL048224.

  • Tingley, M. P., 2012: A Bayesian ANOVA scheme for calculating climate anomalies, with applications to the instrumental temperature record. J. Climate, 25, 777791.

    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., and P. Huybers, 2010a: A Bayesian algorithm for reconstructing climate anomalies in space and time. Part I: Development and applications to paleoclimate reconstruction problems. J. Climate, 23, 27592781.

    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., and P. Huybers, 2010b: A Bayesian algorithm for reconstructing climate anomalies in space and time. Part II: Comparison with the regularized expectation–maximization algorithm. J. Climate, 23, 27822800.

    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., P. F. Craigmile, M. Haran, B. Li, E. Mannshardt-Shamseldin, and B. Rajaratnam, 2012: Piecing together the past: Statistical insights into paleoclimatic reconstructions. Quat. Sci. Rev., 35, 122.

    • Search Google Scholar
    • Export Citation
  • Tolwinski-Ward, S. E., M. N. Evans, M. K. Hughes, and K. J. Anchukaitis, 2010: An efficient forward model of the climate controls on interannual variation in tree-ring width. Climate Dyn., 36, 24192439.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., and J. C. Rogers, 1978: The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description. Mon. Wea. Rev., 106, 296310.

    • Search Google Scholar
    • Export Citation
  • Wahl, E. R., and J. E. Smerdon, 2012: Comparative performance of paleoclimate field and index reconstructions derived from climate proxies and noise-only predictors. Geophys. Res. Lett.,39, L06703, doi:10.1029/2012GL051086.

  • Widmann, M., H. Goosse, G. van der Schrier, R. Schnur, and J. Barkmeijer, 2010: Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium. Climate Past, 6, 627644, doi:10.5194/cp- 6-627-2010.

    • Search Google Scholar
    • Export Citation
  • Xoplaki, E., J. Luterbacher, N. S. H. Paeth, D. Dietrich, M. Grosjean, and H. Wanner, 2005: European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys. Res. Lett.,32, L15713, doi:10.1029/2005GL023424.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 701 297 67
PDF Downloads 246 69 8