The Indian Ocean: The Region of Highest Skill Worldwide in Decadal Climate Prediction

Virginie Guemas Institut Català de Ciències del Clima, Barcelona, Spain

Search for other papers by Virginie Guemas in
Current site
Google Scholar
PubMed
Close
,
Susanna Corti European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, and Istituto di Scienze dell’Atmosfera e del Clima, Consiglio Nazionale delle Riceche, Bologna, Italy

Search for other papers by Susanna Corti in
Current site
Google Scholar
PubMed
Close
,
J. García-Serrano Institut Català de Ciències del Clima, Barcelona, Spain

Search for other papers by J. García-Serrano in
Current site
Google Scholar
PubMed
Close
,
F. J. Doblas-Reyes Institut Català de Ciències del Clima and Instituciò Catalana de Recerca i Estudis Avancats, Barcelona, Spain

Search for other papers by F. J. Doblas-Reyes in
Current site
Google Scholar
PubMed
Close
,
Magdalena Balmaseda European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Magdalena Balmaseda in
Current site
Google Scholar
PubMed
Close
, and
Linus Magnusson European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Linus Magnusson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Indian Ocean stands out as the region where the state-of-the-art decadal climate predictions of sea surface temperature (SST) perform the best worldwide for forecast times ranging from the second to the ninth year, according to correlation and root-mean-square error (RMSE) scores. This paper investigates the reasons for this high skill by assessing the contributions from the initial conditions, greenhouse gases, solar activity, and volcanic aerosols. The comparison between the SST correlation skill in uninitialized historical simulations and hindcasts initialized from estimates of the observed climate state shows that the high Indian Ocean skill is largely explained by the varying radiative forcings, the latter finding being supported by a set of additional sensitivity experiments. The long-term warming trend is the primary contributor to the high skill, though not the only one. Volcanic aerosols bring additional skill in this region as shown by the comparison between initialized hindcasts taking into account or not the effect of volcanic stratospheric aerosols and by the drop in skill when filtering out their effect in hindcasts that take them into account. Indeed, the Indian Ocean is shown to be the region where the ratio of the internally generated over the externally forced variability is the lowest, where the amplitude of the internal variability has been estimated by removing the effect of long-term warming trend and volcanic aerosols by a multiple least squares linear regression on observed SSTs.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-12-00049.s1.

Corresponding author address: Virginie Guemas, Institut Català de Ciències del Clima, Carrer Trueta, 203, 08005 Barcelona, Spain. E-mail: vguemas@ic3.cat

Abstract

The Indian Ocean stands out as the region where the state-of-the-art decadal climate predictions of sea surface temperature (SST) perform the best worldwide for forecast times ranging from the second to the ninth year, according to correlation and root-mean-square error (RMSE) scores. This paper investigates the reasons for this high skill by assessing the contributions from the initial conditions, greenhouse gases, solar activity, and volcanic aerosols. The comparison between the SST correlation skill in uninitialized historical simulations and hindcasts initialized from estimates of the observed climate state shows that the high Indian Ocean skill is largely explained by the varying radiative forcings, the latter finding being supported by a set of additional sensitivity experiments. The long-term warming trend is the primary contributor to the high skill, though not the only one. Volcanic aerosols bring additional skill in this region as shown by the comparison between initialized hindcasts taking into account or not the effect of volcanic stratospheric aerosols and by the drop in skill when filtering out their effect in hindcasts that take them into account. Indeed, the Indian Ocean is shown to be the region where the ratio of the internally generated over the externally forced variability is the lowest, where the amplitude of the internal variability has been estimated by removing the effect of long-term warming trend and volcanic aerosols by a multiple least squares linear regression on observed SSTs.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-12-00049.s1.

Corresponding author address: Virginie Guemas, Institut Català de Ciències del Clima, Carrer Trueta, 203, 08005 Barcelona, Spain. E-mail: vguemas@ic3.cat

Supplementary Materials

    • Supplemental Materials (PDF 2.78 MB)
Save
  • Ashok, K., Z. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 44994502.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, doi:10.1029/2003GL017926.

    • Search Google Scholar
    • Export Citation
  • Bader, J., and M. Latif, 2005: North Atlantic oscillation response to anomalous Indian Ocean SST in a coupled GCM. J. Climate, 18, 53825389.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, F. Moteni, and A. Weaver, 2010: The NEMOVAR-COMBINE ocean re-analysis. COMBINE Tech. Rep. 1, 11 pp. [Available online at http://www.combine-project.eu/Technical–Reports.1668.0.html.]

  • Birkett, C., R. Murtugudde, and T. Allan, 1999: Indian Ocean climate event floods to East Africa’s lakes and the Sudd Marsh. Geophys. Res. Lett., 26, 10311034.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2011: Decadal potential predictability of twenty-first century climate. Climate Dyn., 36, 11191133, doi:10.1007/s00382-010-0747-9.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., M. Stowasser, and K. Hamilton, 2007: Inferring climate sensitivity from volcanic events. Climate Dyn., 28, 481502, doi:10.1007/s00382-006-0193-x.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, and M. A. Alexander, 2010a: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, doi:10.1029/2010GL043321.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2010b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., A. Weisheimer, T. N. Palmer, J. M. Murphy, and D. Smith, 2010: Forecast quality assessment of the ENSEMBLES seasonal-to-decadal stream 2 hindcasts. ECMWF Tech. Memo. 621, 45 pp.

  • Doblas-Reyes, F. J., M. A. Balmaseda, A. Weisheimer, and T. N. Palmer, 2011: Decadal climate prediction with the European Centre for Medium-Range Weather Forecasts coupled forecast system: Impact of ocean observations. J. Geophys. Res., 116, D19111, doi:10.1029/2010JD015394.

    • Search Google Scholar
    • Export Citation
  • Du, H., F. J. Doblas-Reyes, J. Garcia-Serrano, V. Guemas, Y. Soufflet, and B. Wouters, 2012: Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations. Climate Dyn., 39, 20132023.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. M. Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102 (C6), 12 60912 646.

    • Search Google Scholar
    • Export Citation
  • Garcia-Serrano, J., and F. J. Doblas-Reyes, 2012: On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast. Climate Dyn., 39, 20252040.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and T. Fichefet, 1999: Importance of ice–ocean interactions for the global ocean circulation: A model study. J. Geophys. Res., 104 (C10), 23 33723 355.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. Senior, H. Banks, J. Gregory, T. Johns, J. Mithell, and R. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Center coupled model without flux adjustments. Climate Dyn., 16, 147168.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and S. Emori, 2004: K-1 coupled GCM (MIROC) description. K-1 Tech. Rep. 1, Center for Climate System Research, University of Tokyo, 34 pp.

  • Hawkins, E., and R. Sutton, 2009a: Decadal predictability of the Atlantic Ocean in a coupled GCM: Forecast skill and optimal perturbations using linear inverse modeling. J. Climate, 22, 39603978.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009b: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless Earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 13571363.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292, 9092, doi:10.1126/science.1058582.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, doi:10.1038/nature06921.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pôle de modélisation No. 27, Institut Pierre-Simon Laplace, 367 pp.

  • Magnusson, L., M. A. Balmaseda, and F. Molteni, 2011: On the dependence of ENSO simulation on the coupled model mean state. ECMWF Tech. Memo. 658, 27 pp.

  • Meehl, G. A., and Coauthors, 2009: Decadal prediction. Bull. Amer. Meteor. Soc., 90, 14671485.

  • Mochizuki, T., and Coauthors, 2010: Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc. Natl. Acad. Sci. USA, 107, 18331837, doi:10.1073/pnas.0906531107.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., and Coauthors, 2011: The new ECMWF seasonal forecast system (system 4). ECMWF Tech. Memo. 656, 49 pp.

  • Murphy, J., D. Sexton, D. Barnett, G. Jones, M. Webb, M. Collins, and D. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772.

    • Search Google Scholar
    • Export Citation
  • Murphy, J., and Coauthors, 2010: Towards prediction of decadal climate variability and change. Procedia Environ. Sci., 1, 287304.

  • Pohlmann, H., J. H. Jungclaus, A. Kohl, D. Stammer, and J. Marotzke, 2009: Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J. Climate, 22, 39263938.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parametrizations in the Hadley Centre climate model—HadAM3. Climate Dyn., 16, 123146, doi:10.1007/s003820050009.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., M. V. Ramana, G. Roberts, D. Kim, C. Corrigan, C. Chung, and D. Winke, 2007: Warming trends in Asia amplified by brown cloud solar absorption. Nature, 448, 575578.

    • Search Google Scholar
    • Export Citation
  • Robson, J., 2010: Understanding the performance of a decadal prediction system. Ph.D. dissertation, University of Reading, 133 pp.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Gomez, E., C. Cassou, D. L. R. Hodson, N. Keenlyside, Y. Okumura, and T. Zhou, 2008: North Atlantic weather regimes response to Indian–western Pacific Ocean warming: A multi-model study. Geophys. Res. Lett., 35, L15706, doi:10.1029/2008GL034345.

    • Search Google Scholar
    • Export Citation
  • Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98 (D12), 22 98722 994.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., A. Cusack, A. Colman, C. Folland, G. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799, doi:10.1126/science.1139540.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, N. J. Dunstone, D. Fereday, J. M. Murphy, H. Pohlmann, and A. A. Scaife, 2010: Skilful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849.

    • Search Google Scholar
    • Export Citation
  • Smith, I. N., P. McIntosh, T. Ansell, C. J. C. Reason, and K. McInnes, 2000: Southwest Western Australian winter rainfall and its association with Indian Ocean climate variability. Int. J. Climatol., 20, 19131930.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2011: An overview of CMIP5 and the experimental design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2004: ERA-40: ECMWF 45-year reanalysis of the global atmosphere and surface conditions 1957–2000. ECMWF Newsletter, No. 101, ECMWF, Reading, United Kingdom, 2–21.

  • Van Oldenborgh, G. J., F. J. Doblas-Reyes, B. Wouters, and W. Hazeleger, 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 12631280, doi:10.1007/s00382-012-1313-4.

    • Search Google Scholar
    • Export Citation
  • VonStorch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Yukimoto, S., and Coauthors, 2001: The New Meteorological Research Institute coupled GCM (MRI-CGCM2) model climate and variability. Pap. Meteor. Geophys., 51, 4788.

    • Search Google Scholar
    • Export Citation
  • Zieba, A., 1995: Effective number of observations and unbiased estimators of variance for autocorrelated data—An overview. Metrol. Meas. Syst., 17, 316.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1776 1062 422
PDF Downloads 396 77 10