• Camargo, S. J., , K. A. Emanuel, , and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. W. Robertson, , S. J. Gaffney, , P. Smyth, , and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. W. Robertson, , S. J. Gaffney, , P. Smyth, , and M. Ghil, 2007c: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599606.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2006: Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment.” Science, 311, 1713.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., , and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 45904602.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., , S.-Y. Wang, , M.-C. Yen, , and W. A. Gallus Jr., 2004: Role of the monsoon gyre in the interannual variation of tropical cyclone formation over the western North Pacific. Wea. Forecasting, 19, 776785.

    • Search Google Scholar
    • Export Citation
  • Chia, H. H., , and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Paciifc. J. Climate, 15, 29342944.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Dong, K., 1988: El Niño and tropical cyclone frequency in the Australian region and the northwest Pacific. Aust. Meteor. Mag., 28, 219225.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at http://ams.confex.com/ams/pdfpapers/75463.pdf.]

  • George, J. E., , and W. M. Gray, 1976: Tropical cyclone motion and surrounding parameter relationship. J. Appl. Meteor., 15, 12521264.

  • Gray, W. M., 1975: Tropical cyclone genesis. Colorado State University Department of Atmospheric Science Paper 2345, 121 pp.

  • Ho, C.-H., , J.-J. Baik, , J.-H. Kim, , D.-Y. Gong, , and C.-H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 17671776.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., , A. Shouji, , S. Sugimoto, , and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol., 25, 865879.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , P. J. Webster, , and J. A. Curry, 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 18391849.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., , C.-H. Ho, , C.-H. Sui, , and S. K. Park, 2005: Dipole structure of interannual variations in summertime tropical cyclone activity over East Asia. J. Climate, 18, 53445356.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636651.

    • Search Google Scholar
    • Export Citation
  • LinHo, and B. Wang, 2002: The time–space structure of the Asian–Pacific summer monsoon: A fast annual cycle view. J. Climate, 15, 20012019.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., , and J. C. L. Chan, 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Climate, 21, 44644476.

    • Search Google Scholar
    • Export Citation
  • Matsuura, T., , M. Yumoto, , and S. Iizuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dyn., 21, 105117.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • Tu, J.-Y., , C. Chou, , and P.-S. Chu, 2009: The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific–East Asian climate change. J. Climate, 22, 36173628.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wang, C., , and J. Picaut, 2004: Understanding ENSO physics—A review. Earth's Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 47, Amer. Geophys. Union, 21–48.

  • Wu, L., , and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 16861698.

  • Wu, L., , B. Wang, , and S. Geng, 2005: Growing typhoon influence on east Asia. Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.

  • Yu, R., , B. Wang, , and T. Zhou, 2004: Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys. Res. Lett., 31, L22212, doi:10.1029/2004GL021270.

    • Search Google Scholar
    • Export Citation
  • Yumoto, M., , and T. Matsuura, 2001: Interdecadal variability of tropical cyclone activity in the western North Pacific. J. Meteor. Soc. Japan, 79, 2335.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 21992215.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 12
PDF Downloads 20 20 7

Attribution of Decadal Variability in Tropical Cyclone Passage Frequency over the Western North Pacific: A New Approach Emphasizing the Genesis Location of Cyclones

View More View Less
  • 1 Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
© Get Permissions
Restricted access

Abstract

Variability in tropical cyclone (TC) activity is a matter of direct concern for affected populations. On interannual and longer time scales, variability in TC passage frequency can be associated with total TC frequency over the concerned ocean basin [basinwide frequency (BF)], the spatial distribution of TC genesis in the basin [genesis distribution (GD)], and the preferable track (PT) that can be considered as a function of genesis locations. To facilitate investigation of mechanisms responsible for the variability, the authors propose an approach of decomposing anomalies in the passage frequency into contributions of variability in BF, GD, and PT, which is named the Integration of Statistics on TC Activity by Genesis Location (ISTAGL) analysis. Application of this approach to TC best track data in the western North Pacific (WNP) basin reveals that overall distribution of the passage frequency trends over the 1961–2010 period is mainly due to the PT trends. On decadal time scales, passage frequency variability in midlatitudes is primarily due to PT variability, while the BF and GD also play roles in the subtropics. The authors further discuss decadal variability over the East China Sea in detail. The authors demonstrate that northward shift of the PT for TCs generated around the Philippines Sea and westward shift for TCs generated in the eastern part of the WNP contribute the variability with almost equal degree. The relationships between these PT shifts and anomalies in environmental circulation fields are also discussed.

Current affiliation: Japan Agency for Marine–Earth Science and Technology, Yokosuka, Japan.

Corresponding author address: Satoru Yokoi, Japan Agency for Marine–Earth Science and Technology, 2-15, Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan. E-mail: yokoi@jamstec.go.jp

Abstract

Variability in tropical cyclone (TC) activity is a matter of direct concern for affected populations. On interannual and longer time scales, variability in TC passage frequency can be associated with total TC frequency over the concerned ocean basin [basinwide frequency (BF)], the spatial distribution of TC genesis in the basin [genesis distribution (GD)], and the preferable track (PT) that can be considered as a function of genesis locations. To facilitate investigation of mechanisms responsible for the variability, the authors propose an approach of decomposing anomalies in the passage frequency into contributions of variability in BF, GD, and PT, which is named the Integration of Statistics on TC Activity by Genesis Location (ISTAGL) analysis. Application of this approach to TC best track data in the western North Pacific (WNP) basin reveals that overall distribution of the passage frequency trends over the 1961–2010 period is mainly due to the PT trends. On decadal time scales, passage frequency variability in midlatitudes is primarily due to PT variability, while the BF and GD also play roles in the subtropics. The authors further discuss decadal variability over the East China Sea in detail. The authors demonstrate that northward shift of the PT for TCs generated around the Philippines Sea and westward shift for TCs generated in the eastern part of the WNP contribute the variability with almost equal degree. The relationships between these PT shifts and anomalies in environmental circulation fields are also discussed.

Current affiliation: Japan Agency for Marine–Earth Science and Technology, Yokosuka, Japan.

Corresponding author address: Satoru Yokoi, Japan Agency for Marine–Earth Science and Technology, 2-15, Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan. E-mail: yokoi@jamstec.go.jp
Save