Atmospheric Circulation Response to an Instantaneous Doubling of Carbon Dioxide. Part II: Atmospheric Transient Adjustment and Its Dynamics

Yutian Wu Courant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Yutian Wu in
Current site
Google Scholar
PubMed
Close
,
Richard Seager Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Richard Seager in
Current site
Google Scholar
PubMed
Close
,
Tiffany A. Shaw Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Tiffany A. Shaw in
Current site
Google Scholar
PubMed
Close
,
Mingfang Ting Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Mingfang Ting in
Current site
Google Scholar
PubMed
Close
, and
Naomi Naik Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Naomi Naik in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dynamical mechanisms underlying the transient circulation adjustment in the extratropical atmosphere after the instantaneous doubling of carbon dioxide are investigated using the National Center for Atmospheric Research Community Atmosphere Model version 3 coupled to a Slab Ocean Model. It is shown that the transient process during the first few months of integration is important in setting up the extratropical circulation response in equilibrium such as the poleward shift of the tropospheric jet streams. Three phases are found during the transient thermal/dynamical adjustment in the Northern Hemisphere: 1) a radiatively driven easterly anomaly in the subpolar stratosphere, 2) an acceleration of the westerly anomaly in the subpolar stratosphere as a result of anomalous planetary-scale eddy momentum flux convergence, and 3) a “downward migration” of the westerly anomaly from the lower stratosphere to the troposphere, followed by the tropospheric jet shift. Several proposed mechanisms for inducing the poleward shift of the tropospheric jet streams are examined. No significant increase in eddy phase speed is found. The rise in tropopause height appears to lead the tropospheric jet shift but no close relation is observed. The length scale of transient eddies does increase but does not lead the tropospheric jet shift. Finally, the tropospheric jet shift can be captured by changes in the index of refraction and the resulting anomalous eddy propagation in the troposphere.

Corresponding author address: Yutian Wu, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012. E-mail: yutian@cims.nyu.edu

Abstract

The dynamical mechanisms underlying the transient circulation adjustment in the extratropical atmosphere after the instantaneous doubling of carbon dioxide are investigated using the National Center for Atmospheric Research Community Atmosphere Model version 3 coupled to a Slab Ocean Model. It is shown that the transient process during the first few months of integration is important in setting up the extratropical circulation response in equilibrium such as the poleward shift of the tropospheric jet streams. Three phases are found during the transient thermal/dynamical adjustment in the Northern Hemisphere: 1) a radiatively driven easterly anomaly in the subpolar stratosphere, 2) an acceleration of the westerly anomaly in the subpolar stratosphere as a result of anomalous planetary-scale eddy momentum flux convergence, and 3) a “downward migration” of the westerly anomaly from the lower stratosphere to the troposphere, followed by the tropospheric jet shift. Several proposed mechanisms for inducing the poleward shift of the tropospheric jet streams are examined. No significant increase in eddy phase speed is found. The rise in tropopause height appears to lead the tropospheric jet shift but no close relation is observed. The length scale of transient eddies does increase but does not lead the tropospheric jet shift. Finally, the tropospheric jet shift can be captured by changes in the index of refraction and the resulting anomalous eddy propagation in the troposphere.

Corresponding author address: Yutian Wu, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012. E-mail: yutian@cims.nyu.edu
Save
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584.

  • Barnes, E. A., and D. L. Hartmann, 2011: Rossby wave scales, propagation, and the variability of eddy-driven jets. J. Atmos. Sci., 68, 28932908.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1984: The influence of the polar night jet on the tropospheric circulation in a GCM. J. Atmos. Sci., 41, 11321142.

  • Boville, B. A., and X. Cheng, 1988: Upper boundary effects in a general circulation model. J. Atmos. Sci., 45, 25922606.

  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res.,66 (1), 83–109.

  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett.,34, L21805, doi:10.1029/2007GL031200.

  • Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 533597.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., and R. S. Lindzen, 2001: The effect of reflecting surfaces on the vertical structure and variability of stratospheric planetary waves. J. Atmos. Sci., 58, 28722894.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., R. Seager, N. Naik, M. Cane, and M. Ting, 2010: The role of linear wave refraction in the transient eddy–mean flow response to tropical Pacific SST anomalies. Quart. J. Roy. Meteor. Soc.,136, 2132–2146, doi:10.1002/qj.688.

  • Kidston, J., S. M. Dean, J. A. Renwick, and G. K. Vallis, 2010: A robust increase in eddy length scale in the simulation of future climates. Geophys. Res. Lett.,37, L03806, doi:10.1029/2009GL041615.

  • Kidston, J., G. K. Vallis, S. M. Dean, and J. A. Renwick, 2011: Can the increase in the eddy length scale under global warming cause the poleward shift of the jet streams? J. Climate, 24, 37643780.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res.,112, D10119, doi:10.1029/2006JD008087.

  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett.,34, L06805, doi:10.1029/2006GL028443.

  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • Lu, J., C. Deser, and T. Reichler, 2009: Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett.,36, L03803, doi:10.1029/2008GL036076.

  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883.

  • O’Gorman, P. A., 2010: Understanding the varied response of the extratropical storm tracks to climate change. Proc. Natl. Acad. Sci. USA, 107, 19 17619 180.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16, 30113026.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., M. Dameris, and R. Sausen, 2003: Determining the tropopause height from gridded data. Geophys. Res. Lett.,30, 2042, doi:10.1029/2003GL018240.

  • Riviére, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479483.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., R. R. Garcia, D. Marsh, and K. W. Hoppel, 2010: The role of the middle atmosphere in simulations of the troposphere during Northern Hemisphere winter: Differences between high- and low-top models. J. Atmos. Sci., 67, 30483064.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2012: Climate change projections and stratosphere–troposphere interaction. Climate Dyn.,38, 2089–2097, doi:10.1007/s00382-011-1080-7.

  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and W. J. Randel, 2007: Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res.,112, D20113, doi:10.1029/2007JD008861.

  • Seviour, W. J. M., N. Butchart, and S. C. Hardiman, 2011: The Brewer–Dobson circulation inferred from ERA-Interim. Quart. J. Roy. Meteor. Soc., 138, 878888, doi:10.1002/qj.966.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and J. Perlwitz, 2010: The impact of stratospheric model configuration on planetary-scale waves in Northern Hemisphere winter. J. Climate, 23, 33693389.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., J. Perlwitz, and N. Harnik, 2010: Downward wave coupling between the stratosphere and troposphere: The importance of meridional wave guiding and comparison with zonal-mean coupling. J. Climate, 23, 63656381.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. F. Scinocca, 2010: The influence of the basic state on the Northern Hemisphere circulation response to climate change. J. Climate, 23, 14341446.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., P. C. Siegmund, E. Manzini, and H. Kelder, 2004: A simulation of the separate climate effects of middle-atmospheric and tropospheric CO2 doubling. J. Climate, 17, 23522367.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, and P. J. Kushner, 2008: Impact of the stratosphere on tropospheric climate change. Geophys. Res. Lett.,35, L12706, doi:10.1029/2008GL033573.

  • Simpson, I. R., M. Blackburn, and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66, 13471365.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., M. Ting, R. Seager, H.-P. Huang, and M. A. Cane, 2011: Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Climate Dyn.,37, 53–72, doi:10.1007/s00382-010-0776-4.

  • Wu, Y., R. Seager, M. Ting, N. H. Naik, and T. A. Shaw, 2012: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part I: Model experiments and transient thermal response in the troposphere. J. Climate,25, 2862–2879.

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett.,32, L18701, doi:10.1029/2005GL023684.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 348 72 14
PDF Downloads 160 38 13