Hadley Circulation Response to Orbital Precession. Part II: Subtropical Continent

Timothy M. Merlis Princeton University, and Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Timothy M. Merlis in
Current site
Google Scholar
PubMed
Close
,
Tapio Schneider California Institute of Technology, Pasadena, California

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
,
Simona Bordoni California Institute of Technology, Pasadena, California

Search for other papers by Simona Bordoni in
Current site
Google Scholar
PubMed
Close
, and
Ian Eisenman Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Ian Eisenman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The response of the monsoonal and annual-mean Hadley circulation to orbital precession is examined in an idealized atmospheric general circulation model with a simplified representation of land surface processes in subtropical latitudes. When perihelion occurs in the summer of a hemisphere with a subtropical continent, changes in the top-of-atmosphere energy balance, together with a poleward shift of the monsoonal circulation boundary, lead to a strengthening of the monsoonal circulation. Spatial variations in surface heat capacity determine whether radiative perturbations are balanced by energy storage or by atmospheric energy fluxes. Although orbital precession does not affect annual-mean insolation, the annual-mean Hadley circulation does respond to orbital precession because its sensitivity to radiative changes varies over the course of the year: the monsoonal circulation in summer is near the angular momentum-conserving limit and responds directly to radiative changes; whereas in winter, the circulation is affected by the momentum fluxes of extratropical eddies and is less sensitive to radiative changes.

Corresponding author address: Timothy M. Merlis, Princeton University, and Geophysical Fluid Dynamics Laboratory, Jadwin Hall, Princeton, NJ 08544. E-mail: tmerlis@princeton.edu

Abstract

The response of the monsoonal and annual-mean Hadley circulation to orbital precession is examined in an idealized atmospheric general circulation model with a simplified representation of land surface processes in subtropical latitudes. When perihelion occurs in the summer of a hemisphere with a subtropical continent, changes in the top-of-atmosphere energy balance, together with a poleward shift of the monsoonal circulation boundary, lead to a strengthening of the monsoonal circulation. Spatial variations in surface heat capacity determine whether radiative perturbations are balanced by energy storage or by atmospheric energy fluxes. Although orbital precession does not affect annual-mean insolation, the annual-mean Hadley circulation does respond to orbital precession because its sensitivity to radiative changes varies over the course of the year: the monsoonal circulation in summer is near the angular momentum-conserving limit and responds directly to radiative changes; whereas in winter, the circulation is affected by the momentum fluxes of extratropical eddies and is less sensitive to radiative changes.

Corresponding author address: Timothy M. Merlis, Princeton University, and Geophysical Fluid Dynamics Laboratory, Jadwin Hall, Princeton, NJ 08544. E-mail: tmerlis@princeton.edu
Save
  • Biasutti, M., A. H. Sobel, and S. J. Camargo, 2009: The role of the Sahara low in summertime Sahel rainfall variability and change in the CMIP3 models. J. Climate, 22, 5755–5771.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., 2007: On the role of eddies in monsoonal circulations: Observations and theory. Ph.D. dissertation, University of California, Los Angeles, 195 pp.

  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515–519.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2010: Regime transitions of steady and time-dependent Hadley circulations: Comparison of axisymmetric and eddy-permitting simulations. J. Atmos. Sci., 67, 1643–1654.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate Past, 3, 279–296.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., and B. Chen, 2001: The origin of monsoons. J. Atmos. Sci., 58, 3497–3507.

  • Chou, C., and J. D. Neelin, 2003: Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Climate, 16, 406–425.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, and H. Su, 2001: Ocean-atmosphere-land feedbacks in an idealized monsoon. Quart. J. Roy. Meteor. Soc., 127, 1869–1892.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., A. Hall, and A. J. Broccoli, 2004: The importance of precessional signals in the tropical climate. Climate Dyn., 22, 327–341.

    • Search Google Scholar
    • Export Citation
  • Couhert, A., T. Schneider, J. Li, D. E. Waliser, and A. M. Tompkins, 2010: The maintenance of the relative humidity of the subtropical free troposphere. J. Climate, 23, 390–403.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 1998: Land-sea geometry and its effect on monsoon circulations. J. Geophys. Res., 103 (D10), 11 555–11 572.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., 1995: On thermally direct circulations in moist atmospheres. J. Atmos. Sci., 52, 1529–1534.

  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429–467.

  • Held, I. M., 2001a: The general circulation of the atmosphere. Proc. 2000 Program in Geophysical Fluid Dynamics, Woods Hole Oceanographic Institution Tech. Rep. WHOI-2001-03, R. Salmon, Ed., Woods Hole Oceanographic Institution, 198 pp. [Available online at http://hdl.handle.net/1912/15.]

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001b: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943–948.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515–533.

    • Search Google Scholar
    • Export Citation
  • Hsu, Y.-H., C. Chou, and K.-Y. Wei, 2010: Land–ocean asymmetry of tropical precipitation changes in the mid-Holocene. J. Climate, 23, 4133–4151.

    • Search Google Scholar
    • Export Citation
  • Jackson, C. S., and A. J. Broccoli, 2003: Orbital forcing of Arctic climate: Mechanisms of climate response and implications for continental glaciation. Climate Dyn., 21, 539–557.

    • Search Google Scholar
    • Export Citation
  • Joussaume, S., and P. Braconnot, 1997: Sensitivity of paleoclimate simulation results to season definitions. J. Geophys. Res., 102 (D2), 1943–1956.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and I. M. Held, 2012: Tropical precipitation, SSTs and the surface energy budget: A zonally symmetric perspective. Climate Dyn., 38, 1917–1924, doi:10.1007/s00382-011-1048-7.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., and J. Marotzke, 2000: Meridional heat transport by the subtropical cell. J. Phys. Oceanogr., 30, 696–705.

  • Kutzbach, J. E., 1981: Monsoon climate of the early Holocene: Climate experiment with the Earth’s orbital parameters for 9000 years ago. Science, 214, 59–61.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and Z. Liu, 1997: Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science, 278, 440–443.

    • Search Google Scholar
    • Export Citation
  • Legrande, A. N., and G. A. Schmidt, 2009: Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Climate Past, 5, 441–455.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 2416–2427.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and T. Schneider, 2011: Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. J. Climate, 24, 4757–4768.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013a: Hadley circulation response to orbital precession. Part I: Aquaplanets. J. Climate, 26, 740–753.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013b: The tropical precipitation response to orbital precession. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 267–301.

  • Nie, J., W. R. Boos, and Z. Kuang, 2010: Observational evaluation of a convective quasi-equilibrium view of monsoons. J. Climate, 23, 4416–4428.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2011: The effective static stability experienced by eddies in a moist atmosphere. J. Atmos. Sci., 68, 75–90.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: Energy of midlatitude transient eddies in idealized simulations of changed climates. J. Climate, 21, 5797–5806.

    • Search Google Scholar
    • Export Citation
  • Peters, M. E., Z. Kuang, and C. C. Walker, 2008: Analysis of atmospheric energy transport in ERA-40 and implications for simple models of the mean tropical circulation. J. Climate, 21, 5229–5241.

    • Search Google Scholar
    • Export Citation
  • Phillipps, P. J., and I. M. Held, 1994: The response to orbital perturbations in an atmospheric model coupled to a slab ocean. J. Climate, 7, 767–782.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2010: Principles of Planetary Climate. Cambridge University Press, 688 pp.

  • Plumb, R. A., and A. Y. Hou, 1992: The response of a zonally symmetric atmosphere to subtropical thermal forcing: Threshold behavior. J. Atmos. Sci., 49, 1790–1799.

    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. A. Plumb, 2007: Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci., 64, 1417–1430.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655–688.

  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915–934.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2008: Scaling laws and regime transitions of macroturbulence in dry atmospheres. J. Atmos. Sci., 65, 2153–2173.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., K. L. Smith, P. A. O’Gorman, and C. C. Walker, 2006: A climatology of tropospheric zonal-mean water vapor fields and fluxes in isentropic coordinates. J. Climate, 19, 5918–5933.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and T. Schneider, 2009: Single-layer axisymmetric model for a Hadley circulation with parameterized eddy momentum forcing. J. Adv. Model. Earth Syst.,1, 10, doi:10.3894/JAMES.2009.1.10.

  • Su, H., and J. D. Neelin, 2005: Dynamical mechanisms for African monsoon changes during the mid-Holocene. J. Geophys. Res.,110, D19105, doi:10.1029/2005JD005806.

  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 3333–3350.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1525 470 93
PDF Downloads 1002 153 12