• Auvray, M., , and I. Bey, 2005: Long-range transport to Europe: Seasonal variations and implications for the European ozone budget. J. Geophys. Res., 110, D11303, doi:10.1029/2004JD005503.

    • Search Google Scholar
    • Export Citation
  • Bloomer, B. J., , J. W. Stehr, , C. A. Piety, , R. J. Salawitch, , and R. R. Dickerson, 2009: Observed relationships of ozone air pollution with temperature and emissions. Geophys. Res. Lett., 36, L09803, doi:10.1029/2009GL037308.

    • Search Google Scholar
    • Export Citation
  • Camalier, L., , W. Cox, , and P. Dolwick, 2007: The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ., 41, 71277137, doi:10.1016/j.atmosenv.2007.04.061.

    • Search Google Scholar
    • Export Citation
  • Chang, J. S., , S. Jin, , Y. Li, , M. Beauharnois, , C.-H. Lu, , H.-C. Huang, , S. Tanrikulu, , and J. Damassa, 1997: The SARMAP Air Quality Model final report. California Environmental Protection Agency Air Resource Board Rep., 160 pp.

  • Chen, M., , R. Talbot, , H. Mao, , B. Sive, , J. Chen, , and R. J. Griffin, 2007: Air mass classification in coastal New England and its relationship to meteorological conditions. J. Geophys. Res., 112, D10S05, doi:10.1029/2006JD007687.

    • Search Google Scholar
    • Export Citation
  • Comrie, A. C., , and B. Yarnal, 1992: Relationships between synoptic-scale atmospheric circulation and ozone concentrations in metropolitan Pittsburgh, Pennsylvania. Atmos. Environ., 26B, 301312.

    • Search Google Scholar
    • Export Citation
  • Cooter, E. J., , J. Swall, , and R. Gilliam, 2007: Comparison of 700-hPa NCEP-R1 and AMIP-R2 wind patterns over the continental United States using cluster analysis. J. Appl. Meteor., 46, 17441758.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., and Coauthors, 2007: Ozone differences between near-coastal and offshore sites in New England: Role of meteorology. J. Geophys. Res., 112, D16S91, doi:10.1029/2007JD008446.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., , B. P. Hayden, , D. A. Gay, , W. L. Phillips, , and G. V. Jones, 1997: The North Atlantic subtropical anticyclone. J. Climate, 10, 728744.

    • Search Google Scholar
    • Export Citation
  • Diem, J. E., 2006: Synoptic-scale controls of summer precipitation in the southern United States. J. Climate, 19, 613621.

  • Dudhia, J., , D. Gill, , Y. R. Guo, , K. Manning, , W. Wang, , and C. Bruyere, 2005: PSU/NCAR mesoscale modeling system tutorial class notes and user’s guide: MM5 modeling system version 3.7. [Available online at http://www.mmm.ucar.edu/mm5/documents/tutorial-v3-notes.html.]

  • Easterling, D. R., 1990: Persistent patterns of thunderstorm activity in the central United States. J. Climate, 3, 13801389.

  • Fang, Y., , A. M. Fiore, , L. W. Horowitz, , A. Gnanadesikan, , H. Levy II, , Y. Hu, , and A. G. Russell, 2009: Estimating the contribution of strong daily export events to total pollutant export from the United States in summer. J. Geophys. Res., 114, D23302, doi:10.1029/2008JD010946.

    • Search Google Scholar
    • Export Citation
  • Gilliam, R. C., , C. Hogrefe, , and S. T. Rao, 2006: New methods for evaluating meteorological models used in air quality applications. Atmos. Environ., 40, 50735086.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787.

  • Gustafson, W. I., Jr., , and L. R. Leung, 2007: Regional downscaling for air quality assessment: A reasonable proposition? Bull. Amer. Meteor. Soc., 88, 12151227.

    • Search Google Scholar
    • Export Citation
  • Hegarty, J., , H. Mao, , and R. Talbot, 2007: Synoptic controls on summertime surface ozone in the northeastern United States. J. Geophys. Res., 112, D14306, doi:10.1029/2006JD008170.

    • Search Google Scholar
    • Export Citation
  • Heidorn, K. C., , and D. Yap, 1986: A synoptic climatology for surface ozone concentrations in southern Ontario, 1976-1981. Atmos. Environ., 20, 695703.

    • Search Google Scholar
    • Export Citation
  • Henderson, K. G., , and A. J. Vega, 1996: Regional precipitation variability in the southern United States. Phys. Geogr., 17, 93112.

  • Higgins, R. W., , Y. Yao, , E. S. Yarosh, , J. E. Janowiak, , and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507.

    • Search Google Scholar
    • Export Citation
  • Hogrefe, C., , J. Biswas, , B. Lynn, , K. Civerolo, , J.-Y. Ku, , J. Rosenthal, , C. Rosenzweig, , R. Goldberg, , and P. L. Kinney, 2004: Simulating regional-scale ozone climatology over the eastern United States: Model evaluation results. Atmos. Environ., 38, 26272638.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-C., , and J. S. Chang, 2001: On the performance of numerical solvers for chemistry submodel in three-dimensional air quality models: Box-model simulations. J. Geophys. Res., 106 (D17), 20 17520 188.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-C., , X.-Z. Liang, , K. E. Kunkel, , M. Caughey, , and A. Williams, 2007: Seasonal simulation of tropospheric ozone over the midwestern and northeastern United States: An application of a coupled regional climate and air quality modeling system. J. Appl. Meteor., 46, 945960.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-C., and Coauthors, 2008: Impacts of long-range transport of global pollutants and precursor gases on U.S. air quality under future climatic conditions. J. Geophys. Res., 113, D19307, doi:10.1029/2007JD009469.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , J. J. Hack, , D. Shea, , J. M. Caron, , and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153.

    • Search Google Scholar
    • Export Citation
  • Jacob, D. J., , and D. A. Winner, 2009: Effect of climate change on air quality. Atmos. Environ., 43, 5163.

  • Jacob, D. J., , J. A. Logan, , G. M. Gardner, , R. M. Yevich, , C. M. Spivakovsky, , S. C. Wofsy, , S. Sillman, , and M. J. Prather, 1993: Factors regulating ozone over the United States and its export to the global atmosphere. J. Geophys. Res., 98 (D8 14 81714 826.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Katz, R. W., , M. B. Parlange, , and C. Tebaldi, 2003: Stochastic modeling of the effects of large-scale circulation on daily weather in the southeastern U.S. Climatic Change, 60, 189216.

    • Search Google Scholar
    • Export Citation
  • Kiley, C. M., , and H. E. Fuelberg, 2006: An examination of summertime cyclone transport processes during Intercontinental Chemical Transport Experiment (INTEX-A). J. Geophys. Res., 111, D24S06, doi:10.1029/2006JD007115.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., , X.-Z. Liang, , J. Zhu, , and Y. Lin, 2006: Can CGCMs simulate the twentieth-century “warming hole” in the central United States? J. Climate, 19, 41374153.

    • Search Google Scholar
    • Export Citation
  • Leibensperger, E. M., , L. J. Mickley, , and D. J. Jacob, 2008: Sensitivity of US air quality to mid-latitude cyclone frequency and implications of 1980-2006 climate change. Atmos. Chem. Phys., 8, 70757086.

    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., , and P. J. Crutzen, 1991: The role of clouds in tropospheric photochemistry. J. Atmos. Chem., 12, 229267.

  • Li, Q., and Coauthors, 2005: North American pollution outflow and the trapping of convectively lifted pollution by upper-level anticyclone. J. Geophys. Res., 110, D10301, doi:10.1029/2004JD005039.

    • Search Google Scholar
    • Export Citation
  • Li, W., , L. Li, , R. Fu, , Y. Deng, , and H. Wang, 2011: Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24, 14991506.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., , K. E. Kunkel, , and A. N. Samel, 2001: Development of a regional climate model for U.S. Midwest applications. Part I: Sensitivity to buffer zone treatment. J. Climate, 14, 43634378.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., , L. Li, , A. Dai, , and K. E. Kunkel, 2004a: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, doi:10.1029/2004GL021054.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., , L. Li, , K. E. Kunkel, , M. Ting, , and J. X. L. Wang, 2004b: Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: Annual cycle. J. Climate, 17, 35103528.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., , J. Pan, , J. Zhu, , K. E. Kunkel, , J. X. L. Wang, , and A. Dai, 2006: Regional climate model downscaling of the U.S. summer climate and future change. J. Geophys. Res., 111, D10108, doi:10.1029/2005JD006685.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2012: Regional Climate-Weather Research and Forecasting Model (CWRF). Bull. Amer. Meteor. Soc., 93, 13631387.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-T., , D. J. Wuebbles, , and X.-Z. Liang, 2008: Effects of intercontinental transport on surface ozone over the United States: Present and future assessment with a global model. Geophys. Res. Lett., 35, L02805, doi:10.1029/2007GL031415.

    • Search Google Scholar
    • Export Citation
  • Logan, J. A., 1989: Ozone in rural areas of the United States. J. Geophys. Res., 94 (D6), 85118532.

  • Mao, H., , and R. Talbot, 2004a: Relationship of surface O3 to large-scale circulation patterns during two recent winters. Geophys. Res. Lett., 31, L06108, doi:10.1029/2003GL018860.

    • Search Google Scholar
    • Export Citation
  • Mao, H., , and R. Talbot, 2004b: Role of meteorological processes in two New England ozone episodes during summer 2001. J. Geophys. Res., 109, D20305, doi:10.1029/2004JD004850.

    • Search Google Scholar
    • Export Citation
  • Martin, E. R., , and C. Schumacher, 2011: The Caribbean low-level jet and its relationship with precipitation in IPCC AR4 models. J. Climate, 24, 59355950.

    • Search Google Scholar
    • Export Citation
  • Muralidharan, V., , G. M. Kumar, , and S. Sampath, 1989: Surface ozone variation associated with rainfall. Pure Appl. Geophys., 130, 4755.

    • Search Google Scholar
    • Export Citation
  • Nolte, C. G., , A. B. Gilliland, , C. Hogrefe, , and L. J. Mickley, 2008: Linking global to regional models to assess future climate impacts on surface ozone levels in the United States. J. Geol. Res., 113, D14307, doi:10.1029/2007JD008497.

    • Search Google Scholar
    • Export Citation
  • Ortegren, J. T., , P. A. Knapp, , J. T. Maxwell, , W. P. Tyminski, , and P. T. Soulé, 2011: Ocean–atmosphere influences on low-frequency warm-season drought variability in the Gulf Coast and southeastern United States. J. Appl. Meteor. Climatol., 50, 11771186.

    • Search Google Scholar
    • Export Citation
  • Owen, R. C., , O. R. Cooper, , A. Stohl, , and R. E. Honrath, 2006: An analysis of the mechanisms of the North American pollutant transport to the central North Atlantic lower free troposphere. J. Geophys. Res., 111, D23S58, doi:10.1029/2006JD007062.

    • Search Google Scholar
    • Export Citation
  • Stahle, D. W., , and M. K. Cleaveland, 1992: Reconstruction and analysis of spring rainfall over the southeastern U.S. for the past 1000 years. Bull. Amer. Meteor. Soc., 73, 19471961.

    • Search Google Scholar
    • Export Citation
  • Vukovich, F. M., 1995: Regional-scale boundary layer ozone variations in the eastern United States and their association with meteorological variations. Atmos. Environ., 29, 22592273.

    • Search Google Scholar
    • Export Citation
  • Vukovich, F. M., , and J. Sherwell, 2003: An examination of the relationship between certain meteorological parameters and surface ozone variations in the Baltimore–Washington corridor. Atmos. Environ., 37, 971981.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors, 2000: Parallel Climate Model (PCM) control and transient simulations. Climate Dyn., 16, 755774.

  • Zhu, J., , and X.-Z. Liang, 2005: Regional climate model simulation of U.S. soil temperature and moisture during 1982–2002. J. Geophys. Res., 110, D24110, doi:10.1029/2005JD006472.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., , and X.-Z. Liang, 2007: Regional climate model simulations of U.S. precipitation and surface air temperature during 1982–2002: Interannual variation. J. Climate, 20, 218232.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 75 75 20
PDF Downloads 58 58 19

Impacts of the Bermuda High on Regional Climate and Ozone over the United States

View More View Less
  • 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • 2 Earth System Science Interdisciplinary Center, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
© Get Permissions
Restricted access

Abstract

Observations reveal that, in summer, westward extension of the Bermuda high enhances the Great Plains low-level jet (LLJ) that transports more moisture northward, causing precipitation increases in the Midwest and decreases in the Gulf States. Meanwhile, more warm air advection from the Gulf of Mexico to the southern Great Plains and stronger clear-sky radiative heating under high pressures over the Southeast result in warmer surface temperatures across the Gulf states. The enhanced LLJ transport of cleaner marine air from the Gulf reduces surface ozone across the southern Great Plains–Midwest. In contrast, larger transport of more polluted air from the Midwest to New England and more frequent air stagnation under high pressures in the Southeast increase ozone over most of the eastern coastal states. This Bermuda high–induced ozone change reversal between the southern Great Plains–Midwest and eastern coastal states, with a magnitude of 6 and 13.5 ppb, respectively, in summer-mean maximum daily 8-h average, exhibits strong decadal variations that should be considered in the U.S. air quality dynamic management.

The observed Bermuda high signatures over the Gulf states can be well captured by regional climate and air quality models. Notable model deficiencies exist over the northern Great Plains–Midwest that are more remote to the Bermuda high and LLJ control. The regional models largely reduce these deficiencies from general circulation models (GCMs). Only 7 out of 51 GCMs can represent all key regional signatures of the Bermuda high, while none can simulate its strong association with planetary sea surface temperature anomalies. The result indicates a great challenge for GCMs to predict Bermuda high variability and change.

Corresponding author address: Dr. Xin-Zhong Liang, Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Court, College Park, MD 20740-3823. E-mail: xliang@umd.edu

Abstract

Observations reveal that, in summer, westward extension of the Bermuda high enhances the Great Plains low-level jet (LLJ) that transports more moisture northward, causing precipitation increases in the Midwest and decreases in the Gulf States. Meanwhile, more warm air advection from the Gulf of Mexico to the southern Great Plains and stronger clear-sky radiative heating under high pressures over the Southeast result in warmer surface temperatures across the Gulf states. The enhanced LLJ transport of cleaner marine air from the Gulf reduces surface ozone across the southern Great Plains–Midwest. In contrast, larger transport of more polluted air from the Midwest to New England and more frequent air stagnation under high pressures in the Southeast increase ozone over most of the eastern coastal states. This Bermuda high–induced ozone change reversal between the southern Great Plains–Midwest and eastern coastal states, with a magnitude of 6 and 13.5 ppb, respectively, in summer-mean maximum daily 8-h average, exhibits strong decadal variations that should be considered in the U.S. air quality dynamic management.

The observed Bermuda high signatures over the Gulf states can be well captured by regional climate and air quality models. Notable model deficiencies exist over the northern Great Plains–Midwest that are more remote to the Bermuda high and LLJ control. The regional models largely reduce these deficiencies from general circulation models (GCMs). Only 7 out of 51 GCMs can represent all key regional signatures of the Bermuda high, while none can simulate its strong association with planetary sea surface temperature anomalies. The result indicates a great challenge for GCMs to predict Bermuda high variability and change.

Corresponding author address: Dr. Xin-Zhong Liang, Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Court, College Park, MD 20740-3823. E-mail: xliang@umd.edu
Save