• Andersen, J. A., , and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., , E. Tziperman, , and B. Farrell, 2012: Abrupt transition to strong superrotation driven by equatorial wave resonance in an idealized GCM. J. Atmos. Sci., 69, 626640.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296.

    • Search Google Scholar
    • Export Citation
  • Blade, I., , and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 29222939.

  • Bony, S., , J.-L. Dufresne, , H. L. Le Treut, , J.-J. Morcrette, , and C. Senior, 2004: Dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 7186.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., , and M. Huber, 2010: Spontaneous transition to superrotation in warm climates simulated by CAM3. Geophys. Res. Lett., 37, L11701, doi:10.1029/2010GL043468.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701.

  • Dowsett, H. J., , and M. M. Robinson, 2009: Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: A multi-proxy perspective. Philos. Trans. Roy. Soc. London, 367, 109125.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417.

  • Fuchs, Z., , and D. J. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci., 59, 16691679.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58, 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 60, 847864.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61, 19401952.

  • Grodsky, S. A., , A. Bentamy, , J. A. Carton, , and R. T. Pinker, 2009: Intraseasonal latent heat flux based on satellite observations. J. Climate, 22, 45394556.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., , and E. D. Maloney, 2011: The role of moisture convection feedbacks in simulating the Madden–Julian oscillation. J. Climate, 24, 27542770.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29, 1951, doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y.-Y., , and A. Sumi, 1986: The 30-40 day oscillations simulated in an aqua planet model. J. Meteor. Soc. Japan, 64, 451467.

  • Held, I. M., 1999: Equatorial superrotation in Earth-like atmospheric models. Proc. Bernhard Haurwitz Memorial Lecture, Dallas, TX, Amer. Meteor. Soc., 1–24. [Available online at http://www.gfdl.noaa.gov/cms-filesystem-action/user_files/ih/lectures/super.pdf.]

  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Hendon, H. H., , C. Zhang, , and J. D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12, 25382550.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., , and K. M. Weickmann, 2001: Trend in atmospheric angular momentum in a transient climate change simulation with greenhouse gas and aerosol forcing. J. Climate, 14, 15251534.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and L. M. Carvalho, 2006: Changes in the activity of the Madden–Julian oscillation during 1958–2004. J. Climate, 19, 63536370.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., , B. Wang, , and X. Fu, 2002: Simulation of the intraseasonal oscillation in the ECHAM-4 model: The impact of coupling with an ocean model. J. Atmos. Sci., 59, 14331453.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 36173620.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , D. A. Randall, , and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62,21362154.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. H. Straub, , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436.

  • Kim, D., , A. H. Sobel, , and I.-S. Kang, 2011: A mechanism denial study on the Madden-Julian oscillation. J. Adv. Model. Earth Syst.,3, M12007, doi:10.1029/2011MS000081.

  • Kiranmayi, L., , and E. D. Maloney, 2011: The intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, doi:10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Kraucunas, I., , and D. L. Hartmann, 2005: Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere. J. Atmos. Sci., 62, 371389.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: A moisture–stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834854.

  • Kuang, Z., 2011: The wavelength dependence of the gross moist stability and the scale selection in the instability of column-integrated moist static energy. J. Atmos. Sci., 68, 6174.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., , I.-S. Kang, , and B. E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963992.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1999: Why are the climatological zonal winds easterly in the equatorial upper troposphere? J. Atmos. Sci., 56, 13531363.

  • Lee, S., , S. Feldstein, , D. Pollard, , and T. White, 2011: Do planetary wave dynamics contribute to equable climate? J. Climate, 24, 23912404.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., , M. Zhang, , and B. Mapes, 2005: Zonal momentum budget of the Madden–Julian oscillation: The source and strength of equivalent linear damping. J. Atmos. Sci., 62, 21722188.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., , G. N. Kiladis, , B. E. Mapes, , K. M. Weickmann, , K. R. Sperber, , W. Lin, , M. C. Wheeler, , and S. D. Schubert, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and J. A. Biello, 2004: A multiscale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 101, 47364741.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and A. H. Sobel, 2004: Surface fluxes and ocean coupling the tropical intraseasonal oscillation. J. Climate, 17, 43684386.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , A. H. Sobel, , and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2, 124.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., 2000: Convective inhibition, subgridscale triggering, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2542.

  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 382, 950954.

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Muller, C., , P. A. O’Gorman, , and L. E. Back, 2011: Intensification of precipitation extremes with warming in a cloud-resolving model. J. Climate, 24, 2784–2800.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev.,115, 3–12.

  • Numaguti, A., , and Y.-Y. Hayashi, 1991: Behavior of cumulus activity and the structures of circulations in an aqua planet model, part II: Eastward-moving planetary scale structure and the intertropical convergence zone. J. Meteor. Soc. Japan, 69, 563579.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., , and K. R. Thompson, 2012: A reconstruction of Madden–Julian oscillation variability from 1905 to 2008. J. Climate, 25, 19962019.

    • Search Google Scholar
    • Export Citation
  • Pearson, P. N., , B. E. van Dongen, , C. J. Nicholas, , and R. D. Pancost, 2007: Stable warm tropical climate through the Eocene epoch. Geology, 35, 211214.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R., 2000: Climate change and the tropical Pacific: The sleeping dragon wakes. Proc. Natl. Acad. Sci. USA, 97, 13551358.

    • Search Google Scholar
    • Export Citation
  • Randall, D., , M. Khairoutdinov, , A. Arakawa, , and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819.

  • Raymond, D. J., , and Z. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046.

  • Raymond, D. J., , S. L. Sessions, , A. H. Sobel, , and Z. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst.,1, 9, doi:10.3894/JAMES.2009.1.9.

  • Roundy, P. E., 2012: Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 69, 20972106.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., , and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132.

  • Seo, K.-H., , and S.-W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , J. Nilsson, , and L. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , E. D. Maloney, , G. Bellon, , and D. M. Frierson, 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nat. Geosci., 1, 653657.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , E. D. Maloney, , G. Bellon, , and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability a reassessment. J. Adv. Model. Earth Syst.,2, 2, doi:10.3894/JAMES.2010.2.2.

  • Swinbank, R., , T. Palmer, , and M. Davey, 1988: Numerical simulations of the Madden and Julian oscillation. J. Atmos. Sci., 45, 774–788.

  • Thayer-Calder, K., , and D. A. Randall, 2009: The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci., 66, 32973312.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., , and B. Farrell, 2009: Pliocene equatorial temperature: Lessons from atmospheric superrotation. Paleoceanography, 24, PA1101, doi:10.1029/2008PA001652.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-H., , and H.-H. Hsu, 2009: Topographic influence on the MJO in the Maritime Continent. J. Climate, 22, 54335448.

  • Yu, J.-Y., , C. Chou, , and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55, 13541372.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 81 37
PDF Downloads 63 63 26

Enhanced MJO-like Variability at High SST

View More View Less
  • 1 Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
  • 2 Department of Earth and Planetary Sciences, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

The authors report a significant increase in Madden–Julian oscillation (MJO)–like variability in a superparameterized version of the NCAR Community Atmosphere Model run with high sea surface temperatures (SSTs). A series of aquaplanet simulations exhibit a tripling of intraseasonal outgoing longwave radiation variance as equatorial SST is increased from 26° to 35°C. The simulated intraseasonal variability also transitions from an episodic phenomenon to one with a semiregular period of 25 days. Moist static energy (MSE) budgets of composite MJO events are used to diagnose the physical processes responsible for the relationship with SST. This analysis points to an increasingly positive contribution from vertical advection, associated in part with a steepening of the mean vertical MSE profile in the lower troposphere. The change in MSE profile is a natural consequence of increasing SST while maintaining a moist adiabat with a fixed profile of relative humidity. This work has implications for tropical variability in past warm climates as well as anthropogenic global warming scenarios.

Corresponding author address: Nathan Arnold, Harvard University, 24 Oxford St., Cambridge, MA 02138. E-mail: narnold@fas.harvard.edu

Abstract

The authors report a significant increase in Madden–Julian oscillation (MJO)–like variability in a superparameterized version of the NCAR Community Atmosphere Model run with high sea surface temperatures (SSTs). A series of aquaplanet simulations exhibit a tripling of intraseasonal outgoing longwave radiation variance as equatorial SST is increased from 26° to 35°C. The simulated intraseasonal variability also transitions from an episodic phenomenon to one with a semiregular period of 25 days. Moist static energy (MSE) budgets of composite MJO events are used to diagnose the physical processes responsible for the relationship with SST. This analysis points to an increasingly positive contribution from vertical advection, associated in part with a steepening of the mean vertical MSE profile in the lower troposphere. The change in MSE profile is a natural consequence of increasing SST while maintaining a moist adiabat with a fixed profile of relative humidity. This work has implications for tropical variability in past warm climates as well as anthropogenic global warming scenarios.

Corresponding author address: Nathan Arnold, Harvard University, 24 Oxford St., Cambridge, MA 02138. E-mail: narnold@fas.harvard.edu
Save