Tropical Precipitation Extremes

William B. Rossow Cooperative Remote Sensing Science and Technology Institute at The City College of New York, New York, New York

Search for other papers by William B. Rossow in
Current site
Google Scholar
PubMed
Close
,
Ademe Mekonnen Energy and Environmental Systems Department, North Carolina A&T State University, Greensboro, North Carolina

Search for other papers by Ademe Mekonnen in
Current site
Google Scholar
PubMed
Close
,
Cindy Pearl Cooperative Remote Sensing Science and Technology Institute at The City College of New York, New York, New York

Search for other papers by Cindy Pearl in
Current site
Google Scholar
PubMed
Close
, and
Weber Goncalves Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, Sao Paulo, Brazil

Search for other papers by Weber Goncalves in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Classifying tropical deep convective systems by the mesoscale distribution of their cloud properties and sorting matching precipitation measurements over an 11-yr period reveals that the whole distribution of instantaneous precipitation intensity and daily average accumulation rate is composed of (at least) two separate distributions representing distinctly different types of deep convection associated with different meteorological conditions (the distributions of non-deep-convective situations are also shown for completeness). The two types of deep convection produce very different precipitation intensities and occur with very different frequencies of occurrence. Several previous studies have shown that the interaction of the large-scale tropical circulation with deep convection causes switching between these two types, leading to a substantial increase of precipitation. In particular, the extreme portion of the tropical precipitation intensity distribution, above 2 mm h−1, is produced by 40% of the larger, longer-lived mesoscale-organized type of convection with only about 10% of the ordinary convection occurrences producing such intensities. When average precipitation accumulation rates are considered, essentially all of the values above 2 mm h−1 are produced by the mesoscale systems. Yet today’s atmospheric models do not represent mesoscale-organized deep convective systems that are generally larger than current-day circulation model grid cell sizes but smaller than the resolved dynamical scales and last longer than the typical physics time steps. Thus, model-based arguments for how the extreme part of the tropical precipitation distribution might change in a warming climate are suspect.

Corresponding author address: Dr. William B. Rossow, CREST Institute at The City College of New York, Steinman Hall (T-107), 140 Street & Convent Avenue, New York, NY 10031. E-mail: wbrossow@ccny.cuny.edu

Abstract

Classifying tropical deep convective systems by the mesoscale distribution of their cloud properties and sorting matching precipitation measurements over an 11-yr period reveals that the whole distribution of instantaneous precipitation intensity and daily average accumulation rate is composed of (at least) two separate distributions representing distinctly different types of deep convection associated with different meteorological conditions (the distributions of non-deep-convective situations are also shown for completeness). The two types of deep convection produce very different precipitation intensities and occur with very different frequencies of occurrence. Several previous studies have shown that the interaction of the large-scale tropical circulation with deep convection causes switching between these two types, leading to a substantial increase of precipitation. In particular, the extreme portion of the tropical precipitation intensity distribution, above 2 mm h−1, is produced by 40% of the larger, longer-lived mesoscale-organized type of convection with only about 10% of the ordinary convection occurrences producing such intensities. When average precipitation accumulation rates are considered, essentially all of the values above 2 mm h−1 are produced by the mesoscale systems. Yet today’s atmospheric models do not represent mesoscale-organized deep convective systems that are generally larger than current-day circulation model grid cell sizes but smaller than the resolved dynamical scales and last longer than the typical physics time steps. Thus, model-based arguments for how the extreme part of the tropical precipitation distribution might change in a warming climate are suspect.

Corresponding author address: Dr. William B. Rossow, CREST Institute at The City College of New York, Steinman Hall (T-107), 140 Street & Convent Avenue, New York, NY 10031. E-mail: wbrossow@ccny.cuny.edu
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, doi:10.1126/science.1160787.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrological cycle. Nature, 419, 224232, doi:10.1038/nature01092; Corrigendum, 489, 590.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and J. M. Haynes, 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. International Geophysics Series, Vol. 44, Academic Press, 880 pp.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Feldl, N., and G. H. Roe, 2011: Climate variability and the shape of daily precipitation: A case study of ENSO and the American west. J. Climate, 24, 24832499.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787813, doi:10.1007/s00382-006-0158-0.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., and P. V. Hobbs, 1982: Organization and structure of precipitating cloud systems. Advances in Geophysics, Vol. 24, Academic Press, 225–315.

  • Huffman, G. J., R. F. Adler, M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multi-year, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and A. P. Siebesma, 2003: A new subcloud model for mass-flux convection schemes: Influence on triggering, updraft properties, and model climate. Mon. Wea. Rev., 131, 27652778.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30, 2082, doi:10.1029/2003GL018367.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and C. Schumacher, 2008: Precipitation and latent heating characteristics of the major tropical western Pacific cloud regimes. J. Climate, 21, 43484364.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., G. Tselioudis, and T. Hume, 2005: The radiative, cloud and thermodynamic properties of the major tropical western Pacific cloud regimes. J. Climate, 18, 12031215.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., and W. B. Rossow, 1997: Detection of cirrus overlapping low-level clouds. J. Geophys. Res., 102, 17271737.

  • Jung, T., and Coauthors, 2010: The ECMWF model climate: Recent progress through improved physical parameterizations. Quart. J. Roy. Meteor. Soc., 136A, 11451160, doi:10.1002/qj.634.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., 1999: Extreme value theory for precipitation: Sensitivity analysis for climate change. Adv. Water Resour., 23, 133139.

  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982.

    • Search Google Scholar
    • Export Citation
  • Lee, D., L. Oreopoulos, G. J. Huffman, W. B. Rossow, and I.-S. Kang, 2013: The precipitation characteristics of ISCCP tropical weather states. J. Climate, 26, 772788.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514.

    • Search Google Scholar
    • Export Citation
  • Lin, B., and W. B. Rossow, 1997: Precipitation water path and rainfall rate estimates for oceans using Special Sensor Microwave Imager and International Satellite Cloud Climatology Project data. J. Geophys. Res., 102 (D8), 93599374.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., G. Y. Liu, G. L. Stephens, and R. H. Johnson, 2009: Terminal versus transient cumulus congestus: A CloudSat perspective. Geophys. Res. Lett., 36, L05808, doi:10.1029/2008GL036927.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and W. B. Rossow, 1993: Structural characteristics and radiative properties of tropical cloud clusters. Mon. Wea. Rev., 121, 32343260.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and C. Tebaldi, 2005: Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett., 32, L18719, doi:10.1029/2005GL023680.

    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., and W. B. Rossow, 2011: The interaction between deep convection and easterly waves tropical North Africa: A weather state perspective. J. Climate, 24, 42764294.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38, 596606.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1981: A theory of organised steady convection and its transport properties. Quart. J. Roy. Meteor. Soc., 107, 2950.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parametrization. Quart. J. Roy. Meteor. Soc., 118, 819850.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 15211538.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., and W. Murray, 1999: Workshop on indices and indicators for climate extremes: Asheville, NC, USA, 3-6 June 1997, Breakout Group B: Precipitation. Climatic Change, 42, 2329.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, doi:10.1073/pnas.0907610106.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and W. B. Rossow, 2011: The cloud radiative effect of ISCCP weather states. J. Geophys. Res., 116, D12202, doi:10.1029/2010JD015472.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287.

  • Rossow, W. B., and Y. Zhang, 2010: Evaluation of a statistical model of cloud vertical structure using combined CloudSat and CALIPSO cloud layer profiles. J. Climate, 23, 66416653.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005a: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32, L21812, doi:10.1029/2005GL024584.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., Y. Zhang, and J. Wang, 2005b: A statistical model of cloud vertical structure based on reconciling cloud layer amounts inferred from satellites and radiosonde humidity profiles. J. Climate, 18, 35873605.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Y. Hu, 2010: Are climate-related changes to the character of global-mean precipitation predictable? Environ. Res. Lett., 5, 025209, doi:10.1088/1748-9326/5/2/025209.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217.

    • Search Google Scholar
    • Export Citation
  • Tromeur, E., and W. B. Rossow, 2010: Interaction of tropical deep convection with the large-scale circulation in the MJO. J. Climate, 23, 18371853.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and W. B. Rossow, 2011: Time scales of variability of the tropical atmosphere derived from cloud-defined weather states. J. Climate, 24, 602608.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., and L. J. Donner, 2007: The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model. J. Climate, 20, 5369.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 765 212 9
PDF Downloads 497 141 6