Identifying the MJO, Equatorial Waves, and Their Impacts Using 32 Years of HIRS Upper-Tropospheric Water Vapor

Carl J. Schreck III Cooperative Institute for Climate and Satellites (CICS-NC), North Carolina State University, Asheville, North Carolina

Search for other papers by Carl J. Schreck III in
Current site
Google Scholar
PubMed
Close
,
Lei Shi NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Lei Shi in
Current site
Google Scholar
PubMed
Close
,
James P. Kossin NOAA/National Climatic Data Center, Asheville, North Carolina, and NOAA Cooperative Institute for Meteorological Satellite Studies, Madison, Wisconsin

Search for other papers by James P. Kossin in
Current site
Google Scholar
PubMed
Close
, and
John J. Bates NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by John J. Bates in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Madden–Julian oscillation (MJO) and convectively coupled equatorial waves are the dominant modes of synoptic-to-subseasonal variability in the tropics. These systems have frequently been examined with proxies for convection such as outgoing longwave radiation (OLR). However, upper-tropospheric water vapor (UTWV) gives a more complete picture of tropical circulations because it is more sensitive to the drying and warming associated with subsidence. Previous studies examined tropical variability using relatively short (3–7 yr) UTWV datasets. Intersatellite calibration of data from the High Resolution Infrared Radiation Sounder (HIRS) has recently produced a homogeneous 32-yr climate data record of UTWV for 200–500 hPa. This study explores the utility of HIRS UTWV for identifying the MJO and equatorial waves.

Spectral analysis shows that the MJO and equatorial waves stand out above the low-frequency background in UTWV, similar to previous findings with OLR. The fraction of variance associated with the MJO and equatorial Rossby waves is actually greater in UTWV than in OLR. Kelvin waves, on the other hand, are overshadowed in UTWV by horizontal advection from extratropical Rossby waves.

For the MJO, UTWV identifies subsidence drying in the subtropics, poleward of the convection. These dry anomalies are associated with the MJO’s subtropical Rossby gyres. MJO events with dry anomalies over the central North Pacific Ocean also amplify the 200-hPa flow pattern over North America 7 days later. These events cannot be identified using equatorial OLR alone, which demonstrates that UTWV is a useful supplement for identifying the MJO, equatorial waves.

Corresponding author address: Carl J. Schreck III, Cooperative Institute for Climate and Satellites-NC, 151 Patton Ave., Asheville, NC 28801. E-mail: carl@cicsnc.org

Abstract

The Madden–Julian oscillation (MJO) and convectively coupled equatorial waves are the dominant modes of synoptic-to-subseasonal variability in the tropics. These systems have frequently been examined with proxies for convection such as outgoing longwave radiation (OLR). However, upper-tropospheric water vapor (UTWV) gives a more complete picture of tropical circulations because it is more sensitive to the drying and warming associated with subsidence. Previous studies examined tropical variability using relatively short (3–7 yr) UTWV datasets. Intersatellite calibration of data from the High Resolution Infrared Radiation Sounder (HIRS) has recently produced a homogeneous 32-yr climate data record of UTWV for 200–500 hPa. This study explores the utility of HIRS UTWV for identifying the MJO and equatorial waves.

Spectral analysis shows that the MJO and equatorial waves stand out above the low-frequency background in UTWV, similar to previous findings with OLR. The fraction of variance associated with the MJO and equatorial Rossby waves is actually greater in UTWV than in OLR. Kelvin waves, on the other hand, are overshadowed in UTWV by horizontal advection from extratropical Rossby waves.

For the MJO, UTWV identifies subsidence drying in the subtropics, poleward of the convection. These dry anomalies are associated with the MJO’s subtropical Rossby gyres. MJO events with dry anomalies over the central North Pacific Ocean also amplify the 200-hPa flow pattern over North America 7 days later. These events cannot be identified using equatorial OLR alone, which demonstrates that UTWV is a useful supplement for identifying the MJO, equatorial waves.

Corresponding author address: Carl J. Schreck III, Cooperative Institute for Climate and Satellites-NC, 151 Patton Ave., Asheville, NC 28801. E-mail: carl@cicsnc.org
Save
  • Aiyyer, A., and J. Molinari, 2008: MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling. J. Atmos. Sci., 65, 26912704.

    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and L. M. Leslie, 2009: Links between tropical cyclone activity and Madden–Julian Oscillation phase in the North Atlantic and northeast Pacific basins. Mon. Wea. Rev., 137, 727744.

    • Search Google Scholar
    • Export Citation
  • Bates, J. J., X. Wu, and D. L. Jackson, 1996: Interannual variability of upper-troposphere water vapor band brightness temperature. J. Climate, 9, 427438.

    • Search Google Scholar
    • Export Citation
  • Bates, J. J., D. L. Jackson, F.-M. Bréon, and Z. D. Bergen, 2001: Variability of tropical upper tropospheric humidity 1979–1998. J. Geophys. Res., 106, 32 27132 281.

    • Search Google Scholar
    • Export Citation
  • Chuang, H., X. Huang, and K. Minschwaner, 2010: Interannual variations of tropical upper tropospheric humidity and tropical rainy-region SST: Comparisons between models, reanalyses, and observations. J. Geophys. Res., 115, D21125, doi:10.1029/2010JD014205.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. C. Sherwood, 2000: Simulations of tropical upper tropospheric humidity. J. Geophys. Res., 105, 20 15520 163, doi:10.1029/2000JD900231.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 27072721.

  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237.

  • Huang, P., and R. Huang, 2011: Climatology and interannual variability of convectively coupled equatorial waves activity. J. Climate, 24, 44514465.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., and J. J. Bates, 2001: Upper tropospheric humidity algorithm assessment. J. Geophys. Res., 106, 32 25932 270.

  • Kikuchi, K., and Y. N. Takayabu, 2003: Equatorial circumnavigation of moisture signal associated with the Madden–Julian oscillation (MJO) during boreal winter. J. Meteor. Soc. Japan, 81, 851869.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, doi:10.1007/s00382-011-1159-1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 19001923.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., M. J. Fennessy, V. Krishnamurthy, and L. Marx, 2004: An evaluation of the apparent interdecadal shift in the tropical divergent circulation in the NCEP–NCAR reanalysis. J. Climate, 17, 349361.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 20882095.

  • Liebmann, B., and D. L. Hartmann, 1984: An observational study of tropical–midlatitude interaction on intraseasonal time scales during winter. J. Atmos. Sci., 41, 33333350.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lindfors, A. V., I. A. Mackenzie, S. F. B. Tett, and L. Shi, 2011: Climatological diurnal cycles in clear-sky brightness temperatures from the High-Resolution Infrared Radiation Sounder (HIRS). J. Atmos. Oceanic Technol., 28, 11991205.

    • Search Google Scholar
    • Export Citation
  • MacRitchie, K., and P. E. Roundy, 2012: Potential vorticity accumulation following atmospheric Kelvin waves in the active convective region of the MJO. J. Atmos. Sci., 69, 908914.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837.

  • Maloney, E. D., and D. L. Hartmann, 2000a: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287, 20022004.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000b: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., T. S. L’Ecuyer, and C. D. Kummerow, 2006: The Madden–Julian oscillation recorded in early observations from the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Sci., 63, 27772794.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Matthews, A. J., and G. N. Kiladis, 1999: Interactions between ENSO, transient circulation, and tropical convection over the Pacific. J. Climate, 12, 30623086.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, doi:10.1256/qj.02.123.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and J. W. Bergman, 2000: An assessment of the NCEP, NASA, and ECMWF reanalyses over the tropical West Pacific warm pool. Bull. Amer. Meteor. Soc., 81, 4148.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1998: Lateral mixing as a source of subtropical water vapor. Geophys. Res. Lett., 25, 151154.

  • Ray, P., C. Zhang, J. Dudhia, and S. S. Chen, 2009: A numerical case study on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 66, 310331.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 13421359.

  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132.

  • Roundy, P. E., K. MacRitchie, J. Asuma, and T. Melino, 2010: Modulation of the global atmospheric circulation by combined activity in the Madden–Julian oscillation and the El Niño–Southern Oscillation during boreal winter. J. Climate, 23, 40454059.

    • Search Google Scholar
    • Export Citation
  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Salby, M., F. Sassi, P. Callaghan, W. Read, and H. Pumphrey, 2003: Fluctuations of cloud, humidity, and thermal structure near the tropical tropopause. J. Climate, 16, 34283446.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., M. Salby, and W. G. Read, 2001: Relationship between upper tropospheric humidity and deep convection. J. Geophys. Res., 106, 17 13317 146.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., C. Geijo, K. Holmlund, and L. Van De Berg, 1994: Wind fields and upper tropospheric humidity from the METEOSAT water vapor channel. Preprints, Seventh Conf. on Satellite Meteorology and Oceanography, Monterey, CA, Amer. Meteor. Soc., 96–97.

  • Schmetz, J., C. Geijo, W. Menzel, K. Strabala, L. Van De Berg, K. Holmlund, and S. Tjemkes, 1995: Satellite observations of upper tropospheric relative humidity, clouds and wind field divergence. Contrib. Atmos. Phys., 68, 345357.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., and J. Molinari, 2011: Tropical cyclogenesis associated with Kelvin waves and the Madden–Julian oscillation. Mon. Wea. Rev., 139, 27232734.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., J. Molinari, and K. I. Mohr, 2011: Attributing tropical cyclogenesis to equatorial waves in the western North Pacific. J. Atmos. Sci., 68, 195209.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., J. Molinari, and A. Aiyyer, 2012: A global view of equatorial waves and tropical cyclogenesis. Mon. Wea. Rev., 140, 774788.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. J., D. E. Waliser, B. Tian, D. L. Wu, J. H. Jiang, and W. G. Read, 2008: Characterization of MJO-related upper tropospheric hydrological processes using MLS. Geophys. Res. Lett., 35, L08812, doi:10.1029/2008GL033675.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1996: Maintenance of the free-tropospheric tropical water vapor distribution. Part I: Clear regime budget. J. Climate, 9, 29032918.

    • Search Google Scholar
    • Export Citation
  • Shi, L., and J. J. Bates, 2011: Three decades of intersatellite-calibrated High-Resolution Infrared Radiation Sounder upper tropospheric water vapor. J. Geophys. Res., 116, D04108, doi:10.1029/2010JD014847.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and F. P. Bretherton, 1993: Upper tropospheric relative humidity from the GOES 6.7-μm channel: Method and climatology for July 1987. J. Geophys. Res., 98, 16 66916 688.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and R. Fu, 1995: A satellite analysis of deep convection, upper-tropospheric humidity, and the greenhouse effect. J. Climate, 8, 23332351.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and F. P. Bretherton, 1996: Interpretation of TOVS water vapor radiances in terms of layer-average relative humidities: Method and climatology for the upper, middle, and lower troposphere. J. Geophys. Res., 101, 93339343.

    • Search Google Scholar
    • Export Citation
  • Sohn, B.-J., and J. Schmetz, 2004: Water vapor–induced OLR variations associated with high cloud changes over the tropics: A study from Meteosat-5 observations. J. Climate, 17, 19871996.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: Extratropical forcing of convectively coupled Kelvin waves during austral winter. J. Atmos. Sci., 60, 526543.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., G. N. Kiladis, and P. E. Ciesielski, 2006: The role of equatorial waves in the onset of the South China Sea summer monsoon and the demise of El Niño during 1998. Dyn. Atmos. Oceans, 42, 216238, doi:10.1016/j.dynatmoce.2006.02.005.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433449.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. Nitta, 1993: 3-5 day period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221246.

    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, E. J. Fetzer, B. H. Lambrigtsen, Y. L. Yung, and B. Wang, 2006: Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485.

    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, E. J. Fetzer, and Y. L. Yung, 2010: Vertical moist thermodynamic structure of the Madden–Julian oscillation in Atmospheric Infrared Sounder retrievals: An update and a comparison to ECMWF Interim Re-Analysis. Mon. Wea. Rev., 138, 45764582.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361, doi:10.1007/BF01026810.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., 2005: Impact of potential vorticity intrusions on subtropical upper tropospheric humidity. J. Geophys. Res., 110, D11305, doi:10.1029/2004JD005664.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 2010: Madden–Julian oscillation in the tropical stratosphere. J. Geophys. Res., 115, D17113, doi:10.1029/2009JD013748.

  • Webster, P. J., and J. R. Holton, 1982: Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39, 722733.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640.

    • Search Google Scholar
    • Export Citation
  • Wong, S., and A. E. Dessler, 2007: Regulation of H2O and CO in tropical tropopause layer by the Madden–Julian oscillation. J. Geophys. Res., 112, D14305, doi:10.1029/2006JD007940.

    • Search Google Scholar
    • Export Citation
  • Wu, X., J. J. Bates, and S. J. Singh Khalsa, 1993: A climatology of the water vapor band brightness temperatures from NOAA operational satellites. J. Climate, 6, 12821300.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17, 31693180.

  • Zhou, S., M. L’Heureux, S. Weaver, and A. Kumar, 2012: A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Climate Dyn., 38, 14591471, doi:10.1007/s00382-011-1001-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 585 255 19
PDF Downloads 415 135 13