Characterization of Model Spread in PMIP2 Mid-Holocene Simulations of the African Monsoon

Weipeng Zheng Laboratoire des Sciences du Climat et de l’Environnement, UMR 1572 CEA-CNRS-UVSQ, Gif-sur-Yvette, France, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Weipeng Zheng in
Current site
Google Scholar
PubMed
Close
and
Pascale Braconnot Laboratoire des Sciences du Climat et de l’Environnement, UMR 1572 CEA-CNRS-UVSQ, Gif-sur-Yvette, France

Search for other papers by Pascale Braconnot in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Simulations of the West African monsoon (WAM) for the present-day climate (0 ka) and the mid-Holocene (6 ka) using the coupled models from the Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) are assessed in this study. The authors first compare the ensemble simulations with modern observations and proxy estimates of past precipitation, showing that the PMIP2 model median captures the basic features of the WAM for 0 ka and the changes at 6 ka, despite systematic biases in the preindustrial (PI) simulations and underestimates of the northward extent and intensity of precipitation changes.

The model spread is then discussed based on a classification of the monsoonal convective regimes for a subset of seven coupled models. Two major categories of model are defined based on their differences in simulating deep and moderate convective regimes in the PI simulations. Changes in precipitation at 6 ka are dominated by changes in the large-scale dynamics for most of the PMIP2 models and are characterized by a shift in the monsoonal circulation toward deeper convective regimes. Consequently, changes in the total precipitation at 6 ka depend on the changes in convective regimes and the characteristics of these regimes in the PI simulations. The results indicate that systematic model biases in simulating the radiation and heat fluxes could explain the damping of the meridional temperature gradient over West Africa and thereby the underestimation of precipitation in the Sahel–Sahara region.

Corresponding author address: Weipeng Zheng, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 40 Huayanli, Chaoyang District, 10029 Beijing, China. E-mail: zhengwp@mail.iap.ac.cn

Abstract

Simulations of the West African monsoon (WAM) for the present-day climate (0 ka) and the mid-Holocene (6 ka) using the coupled models from the Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) are assessed in this study. The authors first compare the ensemble simulations with modern observations and proxy estimates of past precipitation, showing that the PMIP2 model median captures the basic features of the WAM for 0 ka and the changes at 6 ka, despite systematic biases in the preindustrial (PI) simulations and underestimates of the northward extent and intensity of precipitation changes.

The model spread is then discussed based on a classification of the monsoonal convective regimes for a subset of seven coupled models. Two major categories of model are defined based on their differences in simulating deep and moderate convective regimes in the PI simulations. Changes in precipitation at 6 ka are dominated by changes in the large-scale dynamics for most of the PMIP2 models and are characterized by a shift in the monsoonal circulation toward deeper convective regimes. Consequently, changes in the total precipitation at 6 ka depend on the changes in convective regimes and the characteristics of these regimes in the PI simulations. The results indicate that systematic model biases in simulating the radiation and heat fluxes could explain the damping of the meridional temperature gradient over West Africa and thereby the underestimation of precipitation in the Sahel–Sahara region.

Corresponding author address: Weipeng Zheng, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 40 Huayanli, Chaoyang District, 10029 Beijing, China. E-mail: zhengwp@mail.iap.ac.cn
Save
  • Anderson, P. M., and Coauthors, 1988: Climatic changes of the last 18,000 years: Observations and model simulations. Science, 241, 10431052.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiments (ERBE). Bull. Amer. Meteor. Soc., 65, 11701185.

  • Bartlein, P. J., and Coauthors, 2011: Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Climate Dyn., 37, 775802, doi:10.1007/s00382-00010-00904-00381.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., J.-L. Dufresne, H. L. Treut, J.-J. Morcrette, and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 7186.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. Joussaume, N. D. Noblet, and G. Ramstein, 2000: Mid-Holocene and Last Glacial Maximum African monsoon changes as simulated within the Paleoclimate Modelling Intercomparison Project. Global Planet. Change, 26, 5166.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., M. Loutre, B. Dong, S. Joussaume, and P. Valdes, 2002: How the simulated change in monsoon at 6 ka BP is related to the simulation of the modern climate: Results from the Paleoclimate Modeling Intercomparison Project. Climate Dyn., 19, 107121.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and et al., 2004: Evaluation of PMIP coupled ocean-atmosphere simulations of the mid-Holocene. Past Climate Variability through Europe and Africa, R. W. Battarbee, F. Gasse, and C. E. Stickley, Eds., Springer, 515–533.

  • Braconnot, P., and Coauthors, 2007a: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007b: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate Past, 3, 279296.

    • Search Google Scholar
    • Export Citation
  • Coe, M. T., and S. P. Harrison, 2002: The water balance of northern Africa during the mid-Holocene: An evaluation of the 6 ka BP PMIP simulations. Climate Dyn., 19, 155166.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12, 11651184.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2006: Coupled model simulations of the West African monsoon system: Twentieth- and twenty-first-century simulations. J. Climate, 19, 36813703.

    • Search Google Scholar
    • Export Citation
  • de Noblet, N., P. Braconnot, S. Joussaume, and V. Masson, 1996: Sensitivity of simulated Asian and African summer monsoons to orbital induced variations in insolation 12, 115 and 6 kBP. Climate Dyn., 12, 589603.

    • Search Google Scholar
    • Export Citation
  • Dolman, A., J. Gash, J. Goutorbe, Y. Kerr, T. Lebel, S. Prince, and J. Stricker, 1997: The role of the land surface in Sahelian climate: HAPEX-Sahel results and future research needs. J. Hydrol., 188, 10671079.

    • Search Google Scholar
    • Export Citation
  • Fontaine, B., S. Louvet, and P. Roucou, 2007: Fluctuations in annual cycles and inter-seasonal memory in West Africa: Rainfall, soil moisture and heat fluxes. Theor. Appl. Climatol., 88, 5770.

    • Search Google Scholar
    • Export Citation
  • Gasse, F., 2002: Diatom-inferred salinity and carbonate oxygen isotopes in Holocene waterbodies of the western Sahara and Sahel (Africa). Quat. Sci. Rev., 21, 737767.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., L. Kergoat, E. Mougin, F. Timouk, F. Baup, P. Hiernaux, and F. Lavenu, 2009: Surface thermodynamics and radiative budget in the Sahelian Gourma: Seasonal and diurnal cycles. J. Hydrol., 375, 161177.

    • Search Google Scholar
    • Export Citation
  • Hély, C., P. Braconnot, J. Watrin, and W. Zheng, 2009: Climate and vegetation: Simulating the African humid period. C. R. Geosci., 341, 671688.

    • Search Google Scholar
    • Export Citation
  • Jacob, R., C. Schafer, I. Foster, M. Tobis, and J. Andersen, 2001: Computational design and performance of the Fast Ocean Atmosphere Model, version 1. Proc. Int. Conf. on Computational Science, San Francisco, CA, American Mathematical Society, 175–184.

  • Janicot, S., 1992: Spatiotemporal variability of West African rainfall. Part II: Associated surface and airmass characteristics. J. Climate, 5, 499511.

    • Search Google Scholar
    • Export Citation
  • Jolly, D., and Coauthors, 1998a: Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian Peninsula at 0 and 6000 years. J. Biogeogr., 25, 10071027.

    • Search Google Scholar
    • Export Citation
  • Jolly, D., S. P. Harrison, B. Damnati, and R. Bonnefille, 1998b: Simulated climate and biomes of Africa during the late Quaternary: Comparison with pollen and lake status data. Quat. Sci. Rev., 17, 629657.

    • Search Google Scholar
    • Export Citation
  • Joussaume, S., and K. Taylor, 1995: Status of the Paleoclimate Modeling Intercomparison Project (PMIP). Proceedings of the First International AMIP Scientific Conference, WMO/TD-732, WCRP-92, 425–430.

  • Joussaume, S., and Coauthors, 1999: Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophys. Res. Lett., 26, 859862.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19, 39523972.

    • Search Google Scholar
    • Export Citation
  • K-1 Model Developers, 2004: K-1 coupled GCM (MIROC) description. CCSR/NIES/FRCGC K-1 Tech. Rep. 1, 39 pp.

  • Kållberg, P., 1997: Aspects of the re-analysed climate. ECMWF Re-Analysis Final Rep. 2, 89 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kohfeld, K. E., C. L. Quere, S. P. Harrision, and R. F. Andersen, 2005: Role of marine biology in glacial-interglacial CO2 cycles. Science, 308, 7478.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and B. L. Otto-Bliesner, 1982: The sensitivity of the African–Asian monsoon climate to orbital parameter changes for 9000 years B.P. in a low-resolution general circulation model. J. Atmos. Sci., 39, 11771188.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and P. J. Guetter, 1986: The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years. J. Atmos. Sci., 43, 17261759.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and Z. Liu, 1997: Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science, 278, 440443.

    • Search Google Scholar
    • Export Citation
  • Lézine, A. M., W. Zheng, P. Braconnot, and G. Krinner, 2011: Late Holocene plant and climate evolution at Lake Yoa, northern Chad: Pollen data and climate simulations. Climate Past, 7, 13511362.

    • Search Google Scholar
    • Export Citation
  • Mallet, M., and Coauthors, 2008: Aerosol direct radiative forcing over Djougou (northern Benin) during the African Monsoon Multidisciplinary Analysis dry season experiment (special observation period-0). J. Geophys. Res., 113, D00C01, doi:10.1029/2007JD009419.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., J. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91127.

    • Search Google Scholar
    • Export Citation
  • Marti, O., and Coauthors, 2010: Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dyn., 34, 126.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., 1990: Greenhouse warming: Is the mid-Holocene a good analogue? J. Climate, 3, 11771192.

  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S., 2000: Land surface processes and Sahel climate. Rev. Geophys., 38, 117140.

  • Nicholson, S., 2009: A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dyn., 32, 11551171, doi:10.1007/s00382-008-0514-3.

    • Search Google Scholar
    • Export Citation
  • Ohgaito, R., and A. Abe-Ouchi, 2009: The effect of sea surface temperature bias in the PMIP2 AOGCMs on mid-Holocene Asian monsoon enhancement. Climate Dyn., 33, 975983.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B., E. Brady, G. Clauzet, R. Tomas, S. Levis, and Z. Kothavala, 2006: Last Glacial Maximum and Holocene climate in CCSM3. J. Climate, 19, 25262544.

    • Search Google Scholar
    • Export Citation
  • Peyron, O., D. Jolly, P. Braconnot, R. Bonnefille, J. Guiot, D. Wirrmann, and F. Chalié, 2006: Quantitative reconstructions of annual rainfall in Africa 6000 years ago: Model-data comparison. J. Geophys. Res., 111, D24110, doi:10.1029/2006JD007396.

    • Search Google Scholar
    • Export Citation
  • Phipps, S. J., 2006: The CSIRO Mk3L climate system model. Antarctic Climate and Ecosystems Cooperative Research Centre Tech. Rep. 3, 237 pp.

  • Poccard, I., S. Janicot, and P. Camberlin, 2000: Comparison of rainfall structures between NCEP/NCAR reanalyses and observed data over tropical Africa. Climate Dyn., 16, 897915.

    • Search Google Scholar
    • Export Citation
  • Renssen, H., H. Goosse, T. Fichefet, V. Brovkin, E. Driesschaert, and F. Wolk, 2005: Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model. Climate Dyn., 24, 2343.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., 1998: The first ISLSCP field experiment. J. Atmos. Sci., 55, 10891090.

  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Texier, D., N. De Noblet, and P. Braconnot, 2000: Sensitivity of the African and Asian monsoons to mid-Holocene insolation and data-inferred surface changes. J. Climate, 13, 164181.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and M. Blackburn, 1999: Maintenance of the African easterly jet. Quart. J. Roy. Meteor. Soc., 125, 763786.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wei, J. F., P. Dirmeyer, Z. C. Guo, and L. Zhang, 2010: How much do different land models matter for climate simulation? Part I: Climatology and variability. J. Climate, 23, 31203134.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., and Coauthors, 2010: Intercomparison and analyses of the climatology of the West African monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Climate Dyn., 35, 327.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., X. H. Zhang, and Y. F. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444455.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2006: Present-day climate and climate sensitivity in the Meteorological Research Institute Coupled GCM version 2.3 (MRI-CGCM2.3). J. Meteor. Soc. Japan, 84, 333363.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and Coauthors, 2005: A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene. Climate Dyn., 25, 777800.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., P. Braconnot, S. P. Harrison, P. Yiou, and O. Marti, 2007: Simulated changes in the relationship between tropical ocean temperature and the western African monsoon during the mid-Holocene. Climate Dyn., 28, 533551.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and R. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 58435858.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 62 6
PDF Downloads 98 41 7