The Sensitivity of the Arctic Ocean Sea Ice Thickness and Its Dependence on the Surface Albedo Parameterization

Göran Björk Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Göran Björk in
Current site
Google Scholar
PubMed
Close
,
Christian Stranne Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Christian Stranne in
Current site
Google Scholar
PubMed
Close
, and
Karin Borenäs SMHI, Västra Frölunda, Sweden

Search for other papers by Karin Borenäs in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the response of sea ice thickness to changes in the external forcing is investigated and particularly how this response depends on the surface albedo formulation by means of a one-dimensional coupled ocean–ice–atmosphere model. The main focus is on the thickness response to the atmospheric heat advection Fwall, solar radiation FSW, and amount of snow precipitation Sprec. Different albedo parameterization schemes [ECHAM5, CSIRO, and Community Climate System Model, version 3 (CCSM3)] representing albedos commonly used in global climate models are compared together with more simplified schemes. Using different albedo schemes with the same external forcing produces large differences in ice thickness. The ice thickness response is similar for all realistic albedo schemes with a nearly linear decrease with increasing Fwall in the perennial ice regime and with a steplike transition into seasonal ice when Fwall exceeds a certain threshold. This transition occurs at an annual-mean ice thickness of 1.7–2.0 m. Latitudinal differences in solar insolation generally leads to increasing ice thickness toward the North Pole. The snow response varies significantly depending on which albedo scheme is used. The ECHAM5 scheme yields thinner ice with Sprec, the CSIRO scheme gives ice thickness nearly independent of Sprec, and with the CCSM3 scheme the ice thickness decreases with Sprec. A general result is that the modeled ice cover is rather sensitive to positive perturbations of the external heat supply when it is close to the transition such that just a small increase of, for example, Fwall can force the ice cover into the seasonal regime.

Corresponding author address: Göran Björk, Department of Earth Sciences, University of Gothenburg, Box 460, SE-40530 Gothenburg, Sweden. E-mail: gobj@gvc.gu.se

Abstract

In this study, the response of sea ice thickness to changes in the external forcing is investigated and particularly how this response depends on the surface albedo formulation by means of a one-dimensional coupled ocean–ice–atmosphere model. The main focus is on the thickness response to the atmospheric heat advection Fwall, solar radiation FSW, and amount of snow precipitation Sprec. Different albedo parameterization schemes [ECHAM5, CSIRO, and Community Climate System Model, version 3 (CCSM3)] representing albedos commonly used in global climate models are compared together with more simplified schemes. Using different albedo schemes with the same external forcing produces large differences in ice thickness. The ice thickness response is similar for all realistic albedo schemes with a nearly linear decrease with increasing Fwall in the perennial ice regime and with a steplike transition into seasonal ice when Fwall exceeds a certain threshold. This transition occurs at an annual-mean ice thickness of 1.7–2.0 m. Latitudinal differences in solar insolation generally leads to increasing ice thickness toward the North Pole. The snow response varies significantly depending on which albedo scheme is used. The ECHAM5 scheme yields thinner ice with Sprec, the CSIRO scheme gives ice thickness nearly independent of Sprec, and with the CCSM3 scheme the ice thickness decreases with Sprec. A general result is that the modeled ice cover is rather sensitive to positive perturbations of the external heat supply when it is close to the transition such that just a small increase of, for example, Fwall can force the ice cover into the seasonal regime.

Corresponding author address: Göran Björk, Department of Earth Sciences, University of Gothenburg, Box 460, SE-40530 Gothenburg, Sweden. E-mail: gobj@gvc.gu.se
Save
  • Arctic Climatology Project, 2000: Environmental Working Group Arctic Meteorology and Climate Atlas. F. Fetterer and V. Radionov, Eds., National Snow and Ice Data Center, CD-ROM.

  • Björk, G., 1989: A one-dimensional model for the vertical stratification of the upper Arctic Ocean. J. Phys. Oceanogr., 19, 5267.

  • Björk, G., 1997: The relation between ice deformation oceanic heat flux and the ice thickness distribution in the Arctic Ocean. J. Geophys. Res., 102 (C8), 18 68118 698.

    • Search Google Scholar
    • Export Citation
  • Björk, G., and J. Söderkvist, 2002: Dependence of the Arctic Ocean ice thickness distribution on the poleward energy flux in the atmosphere. J. Geophys. Res., 107, 3173, doi:10.1029/2000JC000723.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the Community Climate System Model, version three. NCAR Tech. Note NCAR/TN-463+STR, 78 pp.

  • Cheng, B., Z. Zhang, T. Vihma, M. Johansson, L. Bian, Z. Li, and H. Wu, 2008: Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE 2003 data. J. Geophys. Res., 113, C09020, doi:10.1029/2007JC004654.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, and E. E. Ebert, 1995: Sea ice–albedo climate feedback mechanism. J. Climate, 8, 240247.

  • DeWeaver, E. T., E. C. Hunke, and M. M. Holland, 2008: Comment on “On the reliability of simulated Arctic sea ice in global climate models” by I. Eisenman, N. Untersteiner, and J. S. Wettlaufer. Geophys. Res. Lett., 35, L04501, doi:10.1029/2007GL031325.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., and J. S. Wettlaufer, 2009: Nonlinear threshold behavior during the loss of Arctic sea ice. Proc. Natl. Acad. Sci. USA, 106, 2832, doi:10.1073/pnas.0806887106.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., N. Untersteiner, and J. S. Wettlaufer, 2007: On the reliability of simulated Arctic sea ice in global climate models. Geophys. Res. Lett., 34, L10501, doi:10.1029/2007GL029914.

    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., and Coauthors, 2002: The CSIRO Mk3 climate system model. CSIRO Atmospheric Research Tech. Paper 60, 134 pp.

  • Gorodetskaya, I. V., L.-B. Tremblay, B. Liepert, M. A. Cane, and R. I. Cullather, 2008: The influence of cloud and surface properties on the Arctic Ocean shortwave radiation budget in coupled models. J. Climate, 21, 866882.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of the recent Arctic warming. Nature, 541, 5356, doi:10.1038/nature06502.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and J. A. Curry, 1999: The role of physical processes in determining the interdecadal variability of central Arctic sea ice. J. Climate, 12, 33193330.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, and B. Tremblay, 2006: Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett., 33, L23503, doi:10.1029/2006GL028024.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., M. C. Serreze, and J. Stroeve, 2010: The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Climate Dyn., 34, 185200, doi:10.1007/s00382-008-0493-4.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds., 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. J. Geophys. Res., 35, L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2011: Observational assessment of Arctic Ocean sea ice motion, export, and thickness in CMIP3 climate simulations. J. Geophys. Res., 116, C00D05, doi:10.1029/2011JC007004.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. A. Rothrock, 1999: Variability of Fram Strait ice flux and North Atlantic Oscillation. J. Geophys. Res., 104 (C3), 51775189.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res., 114, C07005, doi:10.1029/2009JC005312.

    • Search Google Scholar
    • Export Citation
  • L’Hévéder, B., and M.-N. Houssais, 2001: Investigating the variability of the Arctic sea ice thickness in response to a stochastic thermodynamic atmospheric forcing. Climate Dyn., 17, 107125.

    • Search Google Scholar
    • Export Citation
  • Liu, J., Z. Zhang, J. Inoued, and R. M. Hortone, 2007: Evaluation of snow/ice albedo parameterizations and their impacts on sea ice simulations. Int. J. Climatol., 27, 8191, doi:10.1002/joc.1373.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, and W. Emery, 2007: A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett., 34, L24501, doi:10.1029/2007GL032043.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., 1982: Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res., 87 (C10), 79717984.

  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and P. Turet, 1994: Variability of the atmospheric energy flux across 70°N computed from the GFDL data set. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 313–325.

  • Parkinson, C. L., and D. J. Cavalieri, 2008: Arctic sea ice variability and trends. 1979–2006. J. Geophys. Res., 113, C07003, doi:10.1029/2007JC004558.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., and A. Richter-Menge, 2009: Loss of sea ice in the Arctic. Annu. Rev. Mar. Sci., 1, 417441.

  • Polyakov, I. V., and Coauthors, 2010: Arctic Ocean warming contributes to reduced polar ice cap. J. Phys. Oceanogr., 40, 27432756.

  • Rinke, A., and Coauthors, 2006: Evaluation of an ensemble of Arctic regional climate models: Spatiotemporal fields during the SHEBA year. Climate Dyn., 26, 459472, doi:10.1007/s00382-005-0095-3.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5: Part I. Max Planck Institute for Meteorology Rep. 349, 140 pp.

  • Rossow, W. B., and E. N. Duenas, 2004: The International Satellite Cloud Climatology Project (ISCCP) web site: An online resource for research. Bull. Amer. Meteor. Soc., 85, 167172.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., D. B. Percival, and M. Wensnahan, 2008: The decline in Arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. J. Geophys. Res., 113, C05003, doi:10.1029/2007JC004252.

    • Search Google Scholar
    • Export Citation
  • Schramm, J. L., M. M. Holland, and J. A. Curry, 1997: The effects of snowfall on a snow-ice-thickness distribution. Ann. Glaciol., 25, 287291.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, A. G. Slater, M. Steele, J. Zhang, and K. E. Trenberth, 2007a: The large-scale energy budget of the Arctic. J. Geophys. Res., 112, D11122, doi:10.1029/2006JD008230.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007b: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, doi:10.1126/science.1139426.

    • Search Google Scholar
    • Export Citation
  • Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. A. McLaughlin, S. Zimmermann, and A. Proshutinsky, 2006: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605, doi:10.1029/2005GL025624.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360.

    • Search Google Scholar
    • Export Citation
  • Stranne, C., and G. Björk, 2012: On the Arctic Ocean ice thickness response to changes in the external forcing. Climate Dyn., 39, 3007–3018, doi:10.1007/s00382-011-1275-y.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A., 1992: A toy model linking atmospheric thermal radiation and sea ice growth. J. Geophys. Res., 97 (C6), 94019410.

  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88, 205221.

  • Wyser, K., and Coauthors, 2008: An evaluation of Arctic cloud and radiation processes during the SHEBA year: Simulation results from eight Arctic regional climate models. Climate Dyn., 30, 203222, doi:10.1007/s00382-007-0286-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 319 82 4
PDF Downloads 205 43 0