Classifying El Niño Modoki I and II by Different Impacts on Rainfall in Southern China and Typhoon Tracks

Chunzai Wang NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Chunzai Wang in
Current site
Google Scholar
PubMed
Close
and
Xin Wang Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Xin Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on their opposite influences on rainfall in southern China during boreal fall, this paper classifies El Niño Modoki into two groups: El Niño Modoki I and II, which show different origins and patterns of SST anomalies. The warm SST anomalies originate in the equatorial central Pacific and subtropical northeastern Pacific for El Niño Modoki I and II, respectively. Thus, El Niño Modoki I shows a symmetric SST anomaly distribution about the equator with the maximum warming in the equatorial central Pacific, whereas El Niño Modoki II displays an asymmetric distribution with the warm SST anomalies extending from the northeastern Pacific to the equatorial central Pacific. Additionally, the warm SST anomalies in the equatorial central Pacific extend farther westward for El Niño Modoki II than for El Niño Modoki I. Similar to the canonical El Niño, El Niño Modoki I is associated with an anomalous anticyclone in the Philippine Sea that induces southwesterly wind anomalies along the south coast of China and carries the moisture for increasing rainfall in southern China. For El Niño Modoki II, an anomalous cyclone resides east of the Philippines, associated with northerly wind anomalies and a decrease in rainfall in southern China. The canonical El Niño and El Niño Modoki I are associated with a westward extension of the western North Pacific subtropical high (WNPSH), whereas El Niño Modoki II shifts the WNPSH eastward. Differing from canonical El Niño and El Niño Modoki I, El Niño Modoki II corresponds to northwesterly anomalies of the typhoon steering flow, which are unfavorable for typhoons to make landfall in China.

Corresponding author address: Dr. Xin Wang, Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: xin.wang.aoml@noaa.gov

Abstract

Based on their opposite influences on rainfall in southern China during boreal fall, this paper classifies El Niño Modoki into two groups: El Niño Modoki I and II, which show different origins and patterns of SST anomalies. The warm SST anomalies originate in the equatorial central Pacific and subtropical northeastern Pacific for El Niño Modoki I and II, respectively. Thus, El Niño Modoki I shows a symmetric SST anomaly distribution about the equator with the maximum warming in the equatorial central Pacific, whereas El Niño Modoki II displays an asymmetric distribution with the warm SST anomalies extending from the northeastern Pacific to the equatorial central Pacific. Additionally, the warm SST anomalies in the equatorial central Pacific extend farther westward for El Niño Modoki II than for El Niño Modoki I. Similar to the canonical El Niño, El Niño Modoki I is associated with an anomalous anticyclone in the Philippine Sea that induces southwesterly wind anomalies along the south coast of China and carries the moisture for increasing rainfall in southern China. For El Niño Modoki II, an anomalous cyclone resides east of the Philippines, associated with northerly wind anomalies and a decrease in rainfall in southern China. The canonical El Niño and El Niño Modoki I are associated with a westward extension of the western North Pacific subtropical high (WNPSH), whereas El Niño Modoki II shifts the WNPSH eastward. Differing from canonical El Niño and El Niño Modoki I, El Niño Modoki II corresponds to northwesterly anomalies of the typhoon steering flow, which are unfavorable for typhoons to make landfall in China.

Corresponding author address: Dr. Xin Wang, Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: xin.wang.aoml@noaa.gov
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40, 16891708.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2009: La Niña Modoki impacts Australia autumn rainfall variability. Geophys. Res. Lett., 36, L12805, doi:10.1029/2009GL037885.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and W. Zhou, 2005: PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett., 32, L08810, doi:10.1029/2004GL022015.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Role of the subtropical ridge. J. Climate, 13, 43104325.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, doi:10.1029/2007GL030302.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128.

  • Dong, K., and C. J. Neumann, 1986: The relationship between tropical cyclone motion and the environmental geostrophic flows. Mon. Wea. Rev., 114, 115122.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., K. Liu, and B. Kocher, 2000: Spatial variations in major U.S. hurricane activity: Statistics and a physical mechanism. J. Climate, 13, 22932305.

    • Search Google Scholar
    • Export Citation
  • Feng, J., and J. Li, 2011: Influence of El Niño Modoki on spring rainfall over south China. J. Geophys. Res., 116, D13102, doi:10.1029/2010JD015160.

    • Search Google Scholar
    • Export Citation
  • Feng, J., W. Chen, C.-Y. Tam, and W. Zhou, 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 20912101.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Hoskins, B. J., and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637655.

    • Search Google Scholar
    • Export Citation
  • Huang, R., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kao, H. Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632.

  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 18391849.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, doi:10.1029/2005GL022860.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., C. Wang, and B. Mapes, 2009: A simple atmospheric model of the local and teleconnection responses to heating anomalies. J. Climate, 22, 272284.

    • Search Google Scholar
    • Export Citation
  • Li, C., W. Zhou, X. Jia, and X. Wang, 2006: Decadal/interdecadal variations of the ocean temperature and its impacts on climate. Adv. Atmos. Sci., 23, 964981.

    • Search Google Scholar
    • Export Citation
  • Liu, K.-B., and M. L. Fearn, 2000: Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quat. Res., 54, 238245.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Climate, 21, 44644476.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and G. Wu, 2004: Progress in the study on the formation of the summertime subtropical anticyclone. Adv. Atmos. Sci., 21, 322342.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Wu, and R. Ren, 2004: Relationship between the subtropical anticyclone and diabatic heating. J. Climate, 17, 682698.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Miyasaka, T., and H. Nakamura, 2005: Structure and formation mechanisms of the Northern Hemisphere summertime subtropical highs. J. Climate, 18, 50465065.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., and S. C. Chan, 2009: On the summertime strengthening of the Northern Hemisphere Pacific sea level pressure anticyclone. J. Climate, 22, 11741192.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analysis of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ren, F., J. Liang, G. Wu, W. Dong, and X. Yang, 2011: Reliability analysis of climate change of tropical cyclone activity over the western North Pacific. J. Climate, 24, 58875898.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi:10.1029/2010GL046031.

  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211.

  • Rudolf, B., H. Hauschild, W. Ruth, and U. Schneider, 1994: Terrestrial precipitation analysis: Operational method and required density of point measurements. Global Precipitation and Climate Change, M. Dubois and M. Desalmand, Eds., Springer-Verlag, 173–186.

  • Seager, R., R. Murtugudde, N. Naik, A. Clement, N. Gordon, and J. Miller, 2003: Air–sea interaction and the seasonal cycle of the subtropical anticyclones. J. Climate, 16, 19481966.

    • Search Google Scholar
    • Export Citation
  • Song, J.-J., Y. Wang, and L. Wu, 2010: Trend discrepancies among three best track data sets of western North Pacific tropical cyclones. J. Geophys. Res., 115, D12128, doi:10.1029/2009JD013058.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., P.-H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34, L11701, doi:10.1029/2006GL029204.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and L. M. Leslie, 1991: The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Australian region. Wea. Forecasting, 6, 244253.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., 1923: Correlation in seasonal variations of weather VIII: A preliminary study of world weather. Mem. Indian Meteor. Dep., 24, 75131.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 32523265.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and R. H. Weisberg, 2000: The 1997–98 El Niño evolution relative to previous El Niño events. J. Climate, 13, 488501.

  • Wang, C., and J. Picaut, 2004: Understanding ENSO physics—A review. Earth’s Climate: The Ocean–Atmosphere Interaction,Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 21–48.

  • Wang, C., R. H. Weisberg, and J. I. Virmani, 1999: Western Pacific interannual variability associated with the El Niño–Southern Oscillation. J. Geophys. Res., 104 (C3 51315149.

    • Search Google Scholar
    • Export Citation
  • Wang, C., S.-K. Lee, and C. R. Mechoso, 2010: Interhemispheric influence of the Atlantic warm pool on the southeastern Pacific. J. Climate, 23, 404418.

    • Search Google Scholar
    • Export Citation
  • Wang, C., H. Liu, S.-K. Lee, and R. Atlas, 2011: Impact of the Atlantic warm pool on United States landfalling hurricanes. Geophys. Res. Lett., 38, L19702, doi:10.1029/2011GL049265.

    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Deser, J.-Y. Yu, P. DiNezio, and A. Clement, 2013: El Niño–Southern Oscillation (ENSO): A review. Coral Reefs of the Eastern Pacific, P. Glynn, D. Manzello, and I. Enochs, Eds., Springer Science, in press.

  • Wang, X., D. Wang, and W. Zhou, 2009: Decadal variability of twentieth-century El Niño and La Niña occurrence from observations and IPCC AR4 coupled models. Geophys. Res. Lett., 36, L11701, doi:10.1029/2009GL037929.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Wang, W. Zhou, and C. Li, 2012: Interdecadal modulation of the influence of La Niña events on mei-yu rainfall over the Yangtze River valley. Adv. Atmos. Sci., 29, 157168.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys. Res. Lett., 24, 779782.

    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn., 29, 113129.

    • Search Google Scholar
    • Export Citation
  • Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663674.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279.

    • Search Google Scholar
    • Export Citation
  • Wu, R., Z. Hu, and B. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758.

  • Xie, S.-P., Y. Du, G. Huang, X. Zheng, H. Tokinaga, K. Hu, and Q. Liu, 2010: Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, B. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514.

  • Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, D13106, doi:10.1029/2006JD007654.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2010: Three evolution patterns of central-Pacific El Niño. Geophys. Res. Lett., 37, L08706, doi:10.1029/2010GL042810.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the equatorial central Pacific. J. Climate, 23, 28692884.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., F.-F. Jin, J. Li, and H.-L. Ren, 2011: Contrasting impacts of two-type El Niño over the western North Pacific during boreal autumn. J. Meteor. Soc. Japan, 89, 563569.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., and J. C. L. Chan, 2007: ENSO and the South China Sea summer monsoon onset. Int. J. Climatol., 27, 157167.

  • Zhou, W., C. Li, and X. Wang, 2007a: Possible connection between Pacific oceanic interdecadal pathway and East Asian winter monsoon. Geophys. Res. Lett., 34, L01701, doi:10.1029/2006GL027809.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., X. Wang, T. Zhou, C. Li, and J. C. L. Chan, 2007b: Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteor. Atmos. Phys., 98, 283293.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2310 888 200
PDF Downloads 1591 548 47