Pacific Decadal Variability: Paced by Rossby Basin Modes?

Wilbert Weijer Los Alamos National Laboratory, and New Mexico Consortium, Los Alamos, New Mexico

Search for other papers by Wilbert Weijer in
Current site
Google Scholar
PubMed
Close
,
Ernesto Muñoz New Mexico Consortium, Los Alamos, New Mexico

Search for other papers by Ernesto Muñoz in
Current site
Google Scholar
PubMed
Close
,
Niklas Schneider University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Niklas Schneider in
Current site
Google Scholar
PubMed
Close
, and
François Primeau University of California, Irvine, Irvine, California

Search for other papers by François Primeau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A systematic study is presented of decadal climate variability in the North Pacific. In particular, the hypothesis is addressed that oceanic Rossby basin modes are responsible for enhanced energy at decadal and bidecadal time scales. To this end, a series of statistical analyses are performed on a 500-yr control integration of the Community Climate System Model, version 3 (CCSM3). In particular, a principal oscillation pattern (POP) analysis is performed to identify modal behavior in the subsurface pressure field.

It is found that the dominant energy of sea surface temperature (SST) variability at 25 yr (the model equivalent of the Pacific decadal oscillation) cannot be explained by the resonant excitation of an oceanic basin mode. However, significant energy in the subsurface pressure field at time scales of 17 and 10 yr appears to be related to internal ocean oscillations. However, these oscillations lack the characteristics of the classical basin modes, and must either be deformed beyond recognition by the background circulation and inhomogeneous stratification or have another dynamical origin altogether. The 17-yr oscillation projects onto the Pacific decadal oscillation and, if present in the real ocean, has the potential to enhance the predictability of low-frequency climate variability in the North Pacific.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Wilbert Weijer, Los Alamos National Laboratory, CCS-2, MS B296, Los Alamos, NM 87545. E-mail: wilbert@lanl.gov

Abstract

A systematic study is presented of decadal climate variability in the North Pacific. In particular, the hypothesis is addressed that oceanic Rossby basin modes are responsible for enhanced energy at decadal and bidecadal time scales. To this end, a series of statistical analyses are performed on a 500-yr control integration of the Community Climate System Model, version 3 (CCSM3). In particular, a principal oscillation pattern (POP) analysis is performed to identify modal behavior in the subsurface pressure field.

It is found that the dominant energy of sea surface temperature (SST) variability at 25 yr (the model equivalent of the Pacific decadal oscillation) cannot be explained by the resonant excitation of an oceanic basin mode. However, significant energy in the subsurface pressure field at time scales of 17 and 10 yr appears to be related to internal ocean oscillations. However, these oscillations lack the characteristics of the classical basin modes, and must either be deformed beyond recognition by the background circulation and inhomogeneous stratification or have another dynamical origin altogether. The 17-yr oscillation projects onto the Pacific decadal oscillation and, if present in the real ocean, has the potential to enhance the predictability of low-frequency climate variability in the North Pacific.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Wilbert Weijer, Los Alamos National Laboratory, CCS-2, MS B296, Los Alamos, NM 87545. E-mail: wilbert@lanl.gov
Save
  • Alexander, M., and Coauthors, 2006: Extratropical atmosphere–ocean variability in CCSM3. J. Climate, 19, 24962525.

  • Ben Jelloul, M., and T. Huck, 2005: Low-frequency basin modes in a two-layer quasigeostrophic model in the presence of a mean gyre flow. J. Phys. Oceanogr., 35, 21672186.

    • Search Google Scholar
    • Export Citation
  • Biondi, F., C. B. Lange, M. K. Hughes, and W. H. Berger, 1997: Inter-decadal signals during the last millennium (AD 1117–1992) in the varve record of Santa Barbara basin, California. Geophys. Res. Lett., 24, 193196.

    • Search Google Scholar
    • Export Citation
  • Biondi, F., A. Gershunov, and D. R. Cayan, 2001: North Pacific decadal climate variability since 1661. J. Climate, 14, 510.

  • Cessi, P., and S. Louazel, 2001: Decadal oceanic response to stochastic wind forcing. J. Phys. Oceanogr., 31, 30203029.

  • Cessi, P., and F. Paparella, 2001: Excitation of basin modes by ocean–atmosphere coupling. Geophys. Res. Lett., 28, 24372440.

  • Cessi, P., and F. Primeau, 2001: Dissipative selection of low-frequency modes in a reduced-gravity basin. J. Phys. Oceanogr., 31, 127137.

    • Search Google Scholar
    • Export Citation
  • Chen, J., A. D. Del Genio, B. E. Carlson, and M. G. Bosilovich, 2008: The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part II: Pacific pan-decadal variability. J. Climate, 21, 26342650.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Dawe, J. T., and L. Thompson, 2005: Viscosity-dependent internal variability in a model of the North Pacific. J. Phys. Oceanogr., 35, 747756.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19, 24512481.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and M. Ghil, 2005: Low-frequency variability of the large-scale ocean circulation. Rev. Geophys., 43, RG3002, doi:10.1029/2002RG000122.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2008: North Pacific gyre oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, doi:10.1029/2007GL032838.

    • Search Google Scholar
    • Export Citation
  • d’Orgeville, M., and W. R. Peltier, 2007: On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: Might they be related? Geophys. Res. Lett., 34, L23705, doi:10.1029/2007GL031584.

    • Search Google Scholar
    • Export Citation
  • d’Orgeville, M., and W. R. Peltier, 2009: Implications of both statistical equilibrium and global warming simulations with CCSM3. Part I: On the decadal variability in the North Pacific basin. J. Climate, 22, 52775297.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27, 15331546.

    • Search Google Scholar
    • Export Citation
  • Furtado, J. C., E. Di Lorenzo, N. Schneider, and N. A. Bond, 2011: North Pacific decadal variability and climate change in the IPCC AR4 models. J. Climate, 24, 30493067.

    • Search Google Scholar
    • Export Citation
  • Gedalof, Z., N. J. Mantua, and D. L. Peterson, 2002: A multi-century perspective of variability in the Pacific decadal oscillation: New insights from tree rings and coral. Geophys. Res. Lett., 29, 2204, doi:10.1029/2002GL015824.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. I: Theory. Tellus, 28, 473485.

  • Jiang, S., F.-F. Jin, and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Oceanogr., 25, 764786.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and J. Pedlosky, 2002: Baroclinic Rossby waves in irregular basins. J. Phys. Oceanogr., 32, 28282847.

  • LaCasce, J. H., and J. Pedlosky, 2004: The instability of Rossby basin modes and the oceanic eddy field. J. Phys. Oceanogr., 34, 20272041.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634637.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9, 24072423.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2003: Tropical ocean decadal variability and resonance of planetary wave basin modes. Part I: Theory. J. Climate, 16, 15391550.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1964: Planetary waves on a rotating sphere. Proc. Roy. Soc. London, 279A, 446473.

  • Mann, M. E., and J. Park, 1996: Joint spatiotemporal modes of surface temperature and sea level pressure variability in the Northern Hemisphere during the last century. J. Climate, 9, 21372162.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., and N. Schneider, 2000: Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Prog. Oceanogr., 47, 355379.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., 1997: A 50-70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683686.

  • Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26, 855858.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., G. Lin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78, 22152225.

    • Search Google Scholar
    • Export Citation
  • Neumaier, A., and T. Schneider, 2001: Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Software, 27, 2757.

    • Search Google Scholar
    • Export Citation
  • Parks, T. W., and J. H. McClellan, 1972: Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Trans. Circuit Theory, 19, 189194.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1965: A study of the time-dependent ocean circulation. J. Atmos. Sci., 22, 267272.

  • Primeau, F. W., 2002: Long Rossby wave basin-crossing time and the resonance of low-frequency basin modes. J. Phys. Oceanogr., 32, 26522665.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33, 24652482.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., and A. J. Miller, 2001: Predicting western North Pacific Ocean climate. J. Climate, 14, 39974002.

  • Schneider, N., A. J. Miller, and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15, 586605.

  • Schneider, T., and A. Neumaier, 2001: Algorithm 808: ARfit—A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Software, 27, 5865.

    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual. Los Alamos National Laboratory Tech. Rep. LAUR-10-01853, 141 pp.

  • Spydell, M., and P. Cessi, 2003: Baroclinic modes in a two-layer basin. J. Phys. Oceanogr., 33, 610622.

  • Tourre, Y. M., B. Rajagopalan, Y. Kushnir, M. Barlow, and W. B. White, 2001: Patterns of coherent decadal and interdecadal climate signals in the Pacific basin during the 20th century. Geophys. Res. Lett., 28, 20692072.

    • Search Google Scholar
    • Export Citation
  • Vikhliaev, Y., P. Schopf, T. DelSole, and B. Kirtman, 2007: Finding multiple basin modes in a linear ocean model. J. Atmos. Oceanic Technol., 24, 10331049.

    • Search Google Scholar
    • Export Citation
  • Von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Von Storch, H., G. Bürger, R. Schnur, and J.-S. Von Storch, 1995: Principal oscillation patterns: A review. J. Climate, 8, 377400.

  • Yang, H., Z. Liu, and Q. Zhang, 2004: Tropical ocean decadal variability and resonance of planetary wave basin modes. Part II: Numerical study. J. Climate, 17, 17111721.

    • Search Google Scholar
    • Export Citation
  • Zhong, Y., Z. Liu, and R. Jacob, 2008: Origin of Pacific multidecadal variability in the Community Climate System Model, version 3 (CCSM3): A combined and dynamical assessment. J. Climate, 21, 114133.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 42 3
PDF Downloads 59 31 3