Sensitivity of Global Tropical Climate to Land Surface Processes: Mean State and Interannual Variability

Hsi-Yen Ma Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Hsi-Yen Ma in
Current site
Google Scholar
PubMed
Close
,
Heng Xiao Atmospheric Sciences and Global Change Division, Pacific North National Laboratory, Richland, Washington

Search for other papers by Heng Xiao in
Current site
Google Scholar
PubMed
Close
,
C. Roberto Mechoso Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by C. Roberto Mechoso in
Current site
Google Scholar
PubMed
Close
, and
Yongkang Xue Department of Atmospheric and Oceanic Sciences, and Department of Geography, University of California, Los Angeles, Los Angeles, California

Search for other papers by Yongkang Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the sensitivity of the global climate to land surface processes (LSP) using an atmospheric general circulation model both uncoupled (with prescribed SSTs) and coupled to an oceanic general circulation model. The emphasis is on the interactive soil moisture and vegetation biophysical processes, which have first-order influence on the surface energy and water budgets. The sensitivity to those processes is represented by the differences between model simulations, in which two land surface schemes are considered: 1) a simple land scheme that specifies surface albedo and soil moisture availability and 2) the Simplified Simple Biosphere Model (SSiB), which allows for consideration of interactive soil moisture and vegetation biophysical process. Observational datasets are also employed to assess the extent to which results are realistic.

The mean state sensitivity to different LSP is stronger in the coupled mode, especially in the tropical Pacific. Furthermore, the seasonal cycle of SSTs in the equatorial Pacific, as well as the ENSO frequency, amplitude, and locking to the seasonal cycle of SSTs, is significantly modified and more realistic with SSiB. This outstanding sensitivity of the atmosphere–ocean system develops through changes in the intensity of equatorial Pacific trades modified by convection over land. The results further demonstrate that the direct impact of land–atmosphere interactions on the tropical climate is modified by feedbacks associated with perturbed oceanic conditions (“indirect effect” of LSP). The magnitude of such an indirect effect is strong enough to suggest that comprehensive studies on the importance of LSP on the global climate have to be made in a system that allows for atmosphere–ocean interactions.

Corresponding author address: Hsi-Yen Ma, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Mail Code, L-103, 7000 East Avenue, Livermore, CA 94551-0808. E-mail: ma21@llnl.gov

Abstract

This study examines the sensitivity of the global climate to land surface processes (LSP) using an atmospheric general circulation model both uncoupled (with prescribed SSTs) and coupled to an oceanic general circulation model. The emphasis is on the interactive soil moisture and vegetation biophysical processes, which have first-order influence on the surface energy and water budgets. The sensitivity to those processes is represented by the differences between model simulations, in which two land surface schemes are considered: 1) a simple land scheme that specifies surface albedo and soil moisture availability and 2) the Simplified Simple Biosphere Model (SSiB), which allows for consideration of interactive soil moisture and vegetation biophysical process. Observational datasets are also employed to assess the extent to which results are realistic.

The mean state sensitivity to different LSP is stronger in the coupled mode, especially in the tropical Pacific. Furthermore, the seasonal cycle of SSTs in the equatorial Pacific, as well as the ENSO frequency, amplitude, and locking to the seasonal cycle of SSTs, is significantly modified and more realistic with SSiB. This outstanding sensitivity of the atmosphere–ocean system develops through changes in the intensity of equatorial Pacific trades modified by convection over land. The results further demonstrate that the direct impact of land–atmosphere interactions on the tropical climate is modified by feedbacks associated with perturbed oceanic conditions (“indirect effect” of LSP). The magnitude of such an indirect effect is strong enough to suggest that comprehensive studies on the importance of LSP on the global climate have to be made in a system that allows for atmosphere–ocean interactions.

Corresponding author address: Hsi-Yen Ma, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Mail Code, L-103, 7000 East Avenue, Livermore, CA 94551-0808. E-mail: ma21@llnl.gov
Save
  • Arakawa, A., 2000: A personal perspective of the early years of general circulation modeling at UCLA. General Circulation Model Development: Past, Present, and Future: Proceedings of a Symposium in Honor of Professor Akio Arakawa, D. A. Randall, Ed., Academic Press, 1–65.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Bader, D. C., C. Covey, W. J. Gutowski Jr., I. M. Held, K. E. Kunkel, R. L. Miller, R. T. Tokmakian, and M. H. Zhang, 2008: Climate models: An assessment of strengths and limitations. U.S. Climate Change Science Program and the Subcommittee on Global Change Research Department of Energy Office of Biological and Environmental Research Rep., 124 pp.

  • Barnett, T. P., L. Dumenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46, 661685.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. Viterbo, 1996: The land-surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation Land Surface Scheme intercomparison project: An overview. J. Climate, 17, 187208.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. G. Bradley, 1971: Flux–profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189.

    • Search Google Scholar
    • Export Citation
  • Cazes-Boezio, G., D. Menemenlis, and C. R. Mechoso, 2008: Impact of ECCO ocean-state estimates on the initialization of seasonal climate forecasts. J. Climate, 21, 19291947.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100, 93106.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and S. Manabe, 1988: Influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1, 523547.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and S. Manabe, 1989: The influence of soil wetness on near-surface atmosphere variability. J. Climate, 2, 14471462.

  • Dorman, J. L., and P. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere Model (SiB). J. Appl. Meteor., 28, 833855.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2003: Influences of continental monsoons and air–sea coupling on the climate of the equatorial Pacific. J. Climate, 16, 31323152.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Harshvardhan, R. Davies, D. A. Randall, and T. G. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92, 10091016.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, R. Davies, D. A. Randall, T. G. Corsetti, and D. A. Dazlich, 1989: Earth radiation budget and cloudiness simulations with a general circulation model. J. Atmos. Sci., 46, 19221942.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., P. Irannejad, K. McGuffie, and A. J. Pitman, 2003: Predicting land-surface climates—Better skill or moving targets? Geophys. Res. Lett., 30, 1777, doi:10.1029/2003GL017387.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., E. K. Schneider, U. S. Bhatt, and B. P. Kirtman, 2004: Potential mechanism for response of El Niño–Southern Oscillation variability to change in land surface energy budget. J. Geophys. Res., 109, D21113, doi:10.1029/2004JD004771.

    • Search Google Scholar
    • Export Citation
  • Köhler, M., 1999: Explicit prediction of ice clouds in general circulation models. Ph.D. dissertation, University of California, Los Angeles, 167 pp.

  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 24182447.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L., M. Köhler, J. D. Farrara, and C. R. Mechoso, 2002: The impact of stratocumulus cloud radiative properties on surface heat fluxes simulated with a general circulation model. Mon. Wea. Rev., 130, 14331441.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525.

  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., C. R. Mechoso, Y. Xue, H. Xiao, C.-M. Wu, J.-L. Li, and F. De Sales, 2010: Impact of land surface processes on the South American warm season climate. Climate Dyn., 37, 187–203, doi:10.1007/s00382-010-0813-3.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., X. Ji, J. D. Neelin, and C. R. Mechoso, 2011: Mechanisms for precipitation variability of the eastern Brazil/SACZ convective margin. J. Climate, 24, 34453456.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., M. Köhler, J.-L. F. Li, J. Farrara, C. R. Mechoso, R. Forbes, and D. E. Waliser, 2012: Evaluation of an ice cloud parameterization based on a dynamical-microphysical lifetime concept using CloudSat observations and the ERA-Interim reanalysis. J. Geophys. Res., 117, D05210, doi:10.1029/2011JD016275.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 (C3), 57535766.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., J.-Y. Yu, and A. Arakawa, 2000: A coupled GCM pilgrimage: From climate catastrophe to ENSO simulations. General Circulation Model Development: Past, Present and Future: Proceedings of a Symposium in Honor of Professor Akio Arakawa, D. A. Randall, Ed., Academic Press, 539–575.

  • Mechoso, C. R., J. D. Neelin, and J.-Y. Yu, 2003: Testing simple models of ENSO. J. Atmos. Sci., 60, 305318.

  • Meehl, G. A., 1994: Influence of the land surface in the Asian summer monsoon: External conditions versus internal feedbacks. J. Climate, 7, 10331049.

    • Search Google Scholar
    • Export Citation
  • Misra, V., 2008: Coupled interactions of the monsoons. Geophys. Res. Lett., 35, L12705, doi:10.1029/2008GL033562.

  • Neelin, J. D., F.-F. Jin, and H.-H. Syu, 2000: Variations in ENSO phase locking. J. Climate, 13, 25702590.

  • Pan, D.-M., and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124, 949981.

  • Paulson, C. A., 1970: Mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1985: El Niño and La Niña. J. Atmos. Sci., 42, 26522662.

  • Philander, S. G. H., T. Yamagata, and R. Pacanowski, 1984: Unstable air–sea interactions in the tropics. J. Atmos. Sci., 41, 604613.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158.

  • Reynolds, R. W., and T. M. Smith, 1995: A high-resolution global sea surface temperature climatology. J. Climate, 8, 15711583.

  • Richter, I., and S.-P. Xie, 2008: On the origin of equatorial Atlantic biases in coupled general circulation models. Climate Dyn., 31, 587598.

    • Search Google Scholar
    • Export Citation
  • Richter, I., S.-P. Xie, A. T. Wittenberg, and Y. Masumoto, 2012: Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Climate Dyn., 38, 9851001, doi:10.1007/s00382-011-1038-9.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211.

  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505531.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land-atmosphere coupling and climate change in Europe. Nature, 443, 205209.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Suarez, M. J., A. Arakawa, and D. A. Randall, 1983: The parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea. Rev., 111, 22242243.

    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2011: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. USA, 109, 712716.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., S. E. Zebiak, and M. A. Cane, 1997: Mechanisms of seasonal–ENSO interaction. J. Atmos. Sci., 54, 6171.

  • Tziperman, E., M. A. Cane, S. E. Zebiak, Y. Xue, and B. Blumenthal, 1998: Locking of El Niño’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J. Climate, 11, 21912199.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.

    • Search Google Scholar
    • Export Citation
  • Wei, J., and P. A. Dirmeyer, 2010: Toward understanding the large-scale land-atmosphere coupling in the models: Roles of different processes. Geophys. Res. Lett., 37, L19707, doi:10.1029/2010GL044769.

    • Search Google Scholar
    • Export Citation
  • Wei, J., P. A. Dirmeyer, and J. Zhang, 2010: Land-caused uncertainties in climate change simulations: A study with the COLA AGCM. Quart. J. Roy. Meteor. Soc., 136, 819824.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysical Series, Vol. 91, Academic Press, 627 pp.

  • Wu, R., B. P. Kirtman, and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19, 49144932.

    • Search Google Scholar
    • Export Citation
  • Xiao, H., and C. R. Mechoso, 2009a: Correlative evolutions of ENSO and the seasonal cycle. J. Atmos. Sci., 66, 10411049.

  • Xiao, H., and C. R. Mechoso, 2009b: Seasonal cycle–El Niño relationship: Validation of hypotheses. J. Atmos. Sci., 66, 16331653.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., 1997: Biosphere feedback on regional climate in tropical North Africa. Quart. J. Roy. Meteor. Soc.,123B, 1483–1515.

  • Xue, Y., P. J. Sellers, J. L. Kinter III, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345364.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., H. G. Bastable, P. A. Dirmeyer, and P. J. Sellers, 1996a: Sensitivity of simulated surface fluxes to changes in land surface parameterizations—A study using ABRACOS data. J. Appl. Meteor., 35, 386400.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. J. Fennessy, and P. J. Sellers, 1996b: Impact of vegetation properties on U.S. summer weather prediction. J. Geophys. Res., 101 (D3), 74197430.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., F. De Sales, W. Li, C. R. Mechoso, C. Nobre, and H.-M. H. Juang, 2006: Role of land surface processes in South American monsoon development. J. Climate, 19, 741762.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., F. De Sales, R. Vasic, C. R. Mechooso, S. D. Prince, and A. Arakawa, 2010: Global and seasonal assessment of interactions between climate and vegetation biophysical processes: A GCM study with different land–vegetation representations. J. Climate, 23, 14111433.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., and J. D. Neelin, 1999: A land–atmosphere interaction theory for the tropical deforestation problem. J. Climate, 12, 857872.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., R. E. Dickinson, and X. Zeng, 1996: Climatic impact of Amazon deforestation—A mechanistic model study. J. Climate, 9, 859883.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 416 203 9
PDF Downloads 212 70 5