CMIP3 Subtropical Stratocumulus Cloud Feedback Interpreted through a Mixed-Layer Model

Peter M. Caldwell Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Peter M. Caldwell in
Current site
Google Scholar
PubMed
Close
,
Yunyan Zhang Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Yunyan Zhang in
Current site
Google Scholar
PubMed
Close
, and
Stephen A. Klein Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Stephen A. Klein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-scale conditions over subtropical marine stratocumulus areas are extracted from global climate models (GCMs) participating in phase 3 of the Coupled Model Intercomparison Project (CMIP3) and used to drive an atmospheric mixed-layer model (MLM) for current and future climate scenarios. Cloud fraction is computed as the fraction of days where GCM forcings produce a cloudy equilibrium MLM state. This model is a good predictor of cloud fraction and its temporal variations on time scales longer than 1 week but overpredicts liquid water path and entrainment.

GCM cloud fraction compares poorly with observations of mean state, variability, and correlation with estimated inversion strength (EIS). MLM cloud fraction driven by these same GCMs, however, agrees well with observations, suggesting that poor GCM low cloud fraction is due to deficiencies in cloud parameterizations rather than large-scale conditions. However, replacing the various GCM cloud parameterizations with a single physics package (the MLM) does not reduce intermodel spread in low-cloud feedback because the MLM is more sensitive than the GCMs to existent intermodel variations in large-scale forcing. This suggests that improving GCM low cloud physics will not by itself reduce intermodel spread in predicted stratocumulus cloud feedback.

Differences in EIS and EIS change between GCMs are found to be a good predictor of current-climate MLM cloud amount and future cloud change. CMIP3 GCMs predict a robust increase of 0.5–1 K in EIS over the next century, resulting in a 2.3%–4.5% increase in MLM cloudiness. If EIS increases are real, subtropical stratocumulus may damp global warming in a way not captured by the GCMs studied.

Corresponding author address: Peter Caldwell, L-103, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94566. E-mail: caldwell19@llnl.gov

Abstract

Large-scale conditions over subtropical marine stratocumulus areas are extracted from global climate models (GCMs) participating in phase 3 of the Coupled Model Intercomparison Project (CMIP3) and used to drive an atmospheric mixed-layer model (MLM) for current and future climate scenarios. Cloud fraction is computed as the fraction of days where GCM forcings produce a cloudy equilibrium MLM state. This model is a good predictor of cloud fraction and its temporal variations on time scales longer than 1 week but overpredicts liquid water path and entrainment.

GCM cloud fraction compares poorly with observations of mean state, variability, and correlation with estimated inversion strength (EIS). MLM cloud fraction driven by these same GCMs, however, agrees well with observations, suggesting that poor GCM low cloud fraction is due to deficiencies in cloud parameterizations rather than large-scale conditions. However, replacing the various GCM cloud parameterizations with a single physics package (the MLM) does not reduce intermodel spread in low-cloud feedback because the MLM is more sensitive than the GCMs to existent intermodel variations in large-scale forcing. This suggests that improving GCM low cloud physics will not by itself reduce intermodel spread in predicted stratocumulus cloud feedback.

Differences in EIS and EIS change between GCMs are found to be a good predictor of current-climate MLM cloud amount and future cloud change. CMIP3 GCMs predict a robust increase of 0.5–1 K in EIS over the next century, resulting in a 2.3%–4.5% increase in MLM cloudiness. If EIS increases are real, subtropical stratocumulus may damp global warming in a way not captured by the GCMs studied.

Corresponding author address: Peter Caldwell, L-103, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94566. E-mail: caldwell19@llnl.gov
Save
  • Albrecht, B. A., D. A. Randall, and S. Nicholls, 1988: Observations of marine stratocumulus during FIRE. Bull. Amer. Meteor. Soc., 69, 618626.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., C. S. Bretherton, and M. C. Wyant, 2009: Subtropical low cloud response to a warmer climate in a superparameterized climate model. Part II: Column modeling with a cloud resolving model. J. Adv. Model. Earth Syst., 1, 8, doi:10.3894/JAMES.2009.1.8.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of cloud feedback uncertainties in climate models. J. Geophys. Res., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., T. Uttal, C. W. Fairall, S. E. Yuter, R. A. Weller, D. Baumgardner, K. Comstock, and R. Wood, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13.

  • Broccoli, A. J., and S. A. Klein, 2010: Comment on “Observational and model evidence for positive low-level cloud feedback.” Science, 329, 277.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., and C. S. Bretherton, 2009: Response of a subtropical stratocumulus-capped mixed layer to climate and aerosol changes. J. Climate, 22, 2038.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., C. S. Bretherton, and R. Wood, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37753791.

    • Search Google Scholar
    • Export Citation
  • Clement, A., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., C. S. Bretherton, and S. E. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37923807.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Eitzen, I. A., K.-M. Xu, and T. Wong, 2011: An estimate of low-cloud feedbacks from variations of cloud radiative and physical properties with sea surface temperature on interannual time scales. J. Climate, 24, 11061121.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., A. K. Heidinger, and D. J. Vimont, 2007: Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys. Res. Lett., 34, L04701, doi:10.1029/2006GL028083.

    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., and Coauthors, 2002: The CSIRO Mk3 climate system model. CSIRO Tech. Rep. 60, 130 pp. [Available online at http://www.cmar.csiro.au/e-print/open/gordon_2002a.pdf.]

  • Guo, P., Y.-H. Kuo, S. V. Sokolovskiy, and D. H. Lenschow, 2011: Estimating atmospheric boundary layer depth using cosmic radio occultation data. J. Atmos. Sci., 68, 17031713.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 130–163.

  • Hanson, H. P., 1991: Marine stratocumulus climatologies. Int. J. Climatol., 11, 147164.

  • Hasumi, H., and S. Emori, 2004: K-1 coupled model (MIROC) description. University of Tokyo Center for Climate System Research Tech. Rep., 34 pp.

  • Held, I. M., and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., R. Pincus, C. Hannay, and K. M. Xu, 2004: Use of cloud radar observations for model evaluation: A probabilistic approach. J. Geophys. Res., 109, D03202, doi:10.1029/2003JD003473.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606.

  • Klein, S. A., D. L. Hartmann, and J. R. Norris, 1995: On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulation in the summertime northeast Pacific. J. Climate, 8, 11401655.

    • Search Google Scholar
    • Export Citation
  • Knutson, T., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., C. W. Fairall, P. Zuidema, J. Tomlinson, and G. A. Wick, 2004: Observations of marine stratocumulus in SE Pacific during the PACS 2003 cruise. Geophys. Res. Lett.,31, L22110, doi:10.1029/2004GL020751.

  • Lauer, A., K. Hamilton, Y. Wang, V. T. Phillips, and R. Benartz, 2010: The impact of global warming on marine boundary layer clouds over the eastern Pacific—A regional model study. J. Climate, 23, 5844–5863.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D., and W. Lewellen, 1998: Large-eddy boundary layer entrainment. J. Atmos. Sci., 55, 26452665.

  • Lilly, D., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309.

  • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histogram from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, doi:10.1029/2009JD013422.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., B. Stevens, I. M. Held, M. Zhao, D. L. Williamson, J. G. Olson, and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21, 49744991.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1998: Low cloud type over the ocean from surface observations. Part II: Geographical and seasonal variations. J. Climate, 11, 383403.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1999: On trends and possible artifacts in global ocean cloud cover between 1952 and 1995. J. Climate, 12, 18641870.

  • Norris, J. R., 2005: Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing. J. Geophys. Res., 110, D08206, doi:10.1029/2004JD005600.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the runaway greenhouse. J. Atmos. Sci., 52, 17841806.

  • Pincus, R., S. Platnick, S. Ackerman, R. Hemler, and R. Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 4699–4720.

    • Search Google Scholar
    • Export Citation
  • Randall, D., J. Coakley Jr., D. Lenschow, C. Fairall, and R. Kropfli, 1984: Outlook for research on subtropical marine stratification clouds. Bull. Amer. Meteor. Soc., 65, 12901301.

    • Search Google Scholar
    • Export Citation
  • Rieck, M., L. Nuijens, and B. Stevens, 2012: Cloud feedbacks in a constant relative humidity atmosphere. J. Climate,69, 2538–2550.

  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Max Planck Institut für Meteorologie Tech. Rep. 218, 90 pp.

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institut für Meteorologie Tech. Rep. 349, 140 pp.

  • Rossow, W., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287.

  • Salas-Melia, D., and Coauthors, 2005: Description and validation of the CNRM-CM3 global coupled model. CNRM Tech. Rep. 103, 36 pp.

  • Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979: Marine stratocumulus convection. Part II: Horizontally inhomogeneous solutions. J. Atmos. Sci., 36, 13081324.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1990: Sensitivity of the earth’s radiation budget to changes is low clouds. Nature, 343, 4951.

  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock, 2002: Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapour. Science, 296, 727730.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Somerville, R. C. J., and L. A. Remer, 1984: Cloud optical thickness feedbacks in the CO2 climate problem. J. Geophys. Res., 89 (D6), 96689672.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593.

  • Stevens, B., G. Vali, K. Comstock, R. Wood, M. C. van Zanten, P. H. Austin, C. S. Bretherton, and D. H. Lenschow, 2005a: Pockets of open cells and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86, 5157.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005b: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., A. Beljaars, S. Bordoni, C. Holloway, M. Köhler, S. Krueger, V. Savic-Jovcic, and Y. Zhang, 2007: On the structure of the lower troposphere in the summertime stratocumulus regime of the northeast Pacific. Mon. Wea. Rev., 135, 9851005.

    • Search Google Scholar
    • Export Citation
  • Stevens, D., A. S. Ackerman, and C. S. Bretherton, 2002: Effect of domain size and numerical resolution on the simulation of shallow cumulus convection. J. Atmos. Sci., 59, 32853301.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., B. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, doi:10.1029/2006GL028164.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea ice concentration boundary conditions for AMIP II simulations. LLNL/PCMDI Tech. Rep. 60, 25 pp.

  • Vecchi, G., B. Soden, A. Wittenberg, I. Held, A. Leetmaa, and M. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 44, 7376.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., F. H. Lambert, and J. M. Gregory, 2013: Origins of differences in climate sensitivity, forcing, and feedback in climate models. Climate Dyn.,40 (3–4), 677–707, doi:10.1007/s00382-012-1336-x.

  • Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17, 35763588.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower tropospheric stability. J. Climate, 19, 64256432.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, and P. N. Blossey, 2009: Subtropical low cloud response to a warmer climate in a superparameterized climate model. Part I: Regime sorting and physical mechanisms. J. Adv. Model. Earth Syst., 1, 7, doi:10.3894/JAMES.2009.1.7.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-H., A. Cheng, and M. Zhang, 2010: Cloud-resolving simulations of low-cloud feedback to an increase in sea surface temperature. J. Atmos. Sci., 67, 730748.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., X. Zhang, and Y. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444455.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., A. Noda, T. Uchiyama, S. Kusunoki, and A. Kitoh, 2006: Climate changes of the twentieth through twenty-first centuries simulated by the MRI-CGCM2.3. Pap. Meteor. Geophys., 56, 924.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and C. S. Bretherton, 2008: Mechanisms of low cloud-climate feedback in idealized single-column simulations with the Community Atmospheric Model, version 3 (CAM3). J. Climate, 21, 48594878.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., C. S. Bretherton, M. Webb, and P. Siebesma, 2010: CFMIP-GCSS Intercomparison of Large Eddy Models and Single Column Models (CGILS). GEWEX News, No. 20, International GEWEX Project Office, Silver Spring, MD, 1–8.

  • Zhang, Y., B. Stevens, and M. Ghil, 2005: On the diurnal cycle and susceptibility to aerosol concentrations in a stratocumulus-topped mixed layer. Quart. J. Roy. Meteor. Soc., 131, 15671583.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., B. Stevens, B. Medeiros, and M. Ghil, 2009: Low-cloud fraction, lower-tropospheric stability, and large-scale divergence. J. Climate, 22, 48274844.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 386 84 16
PDF Downloads 165 48 5