Metrics and Diagnostics for Precipitation-Related Processes in Climate Model Short-Range Hindcasts

H.-Y. Ma Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by H.-Y. Ma in
Current site
Google Scholar
PubMed
Close
,
S. Xie Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by S. Xie in
Current site
Google Scholar
PubMed
Close
,
J. S. Boyle Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by J. S. Boyle in
Current site
Google Scholar
PubMed
Close
,
S. A. Klein Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by S. A. Klein in
Current site
Google Scholar
PubMed
Close
, and
Y. Zhang Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Y. Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, several metrics and diagnostics are proposed and implemented to systematically explore and diagnose climate model biases in short-range hindcasts and quantify how fast hindcast biases approach to climate biases with an emphasis on tropical precipitation and associated moist processes. A series of 6-day hindcasts with NCAR and the U.S. Department of Energy Community Atmosphere Model, version 4 (CAM4) and version 5 (CAM5), were performed and initialized with ECMWF operational analysis every day at 0000 UTC during the Year of Tropical Convection (YOTC). An Atmospheric Model Intercomparison Project (AMIP) type of ensemble climate simulations was also conducted for the same period. The analyses indicate that initial drifts in precipitation and associated moisture processes (“fast processes”) can be identified in the hindcasts, and the biases share great resemblance to those in the climate runs. Comparing to Tropical Rainfall Measuring Mission (TRMM) observations, model hindcasts produce too high a probability of low- to intermediate-intensity precipitation at daily time scales during northern summers, which is consistent with too frequently triggered convection by its deep convection scheme. For intense precipitation events (>25 mm day−1), however, the model produces a much lower probability partially because the model requires a much higher column relative humidity than observations to produce similar precipitation intensity as indicated by the proposed diagnostics. Regional analysis on precipitation bias in the hindcasts is also performed for two selected locations where most contemporary climate models show the same sign of bias. Based on moist static energy diagnostics, the results suggest that the biases in the moisture and temperature fields near the surface and in the lower and middle troposphere are primarily responsible for precipitation biases. These analyses demonstrate the usefulness of these metrics and diagnostics to diagnose climate model biases.

Corresponding author address: Hsi-Yen Ma, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Mail Code L-103, 7000 East Avenue, Livermore, CA 94551-0808. E-mail: ma21@llnl.gov

Abstract

In this study, several metrics and diagnostics are proposed and implemented to systematically explore and diagnose climate model biases in short-range hindcasts and quantify how fast hindcast biases approach to climate biases with an emphasis on tropical precipitation and associated moist processes. A series of 6-day hindcasts with NCAR and the U.S. Department of Energy Community Atmosphere Model, version 4 (CAM4) and version 5 (CAM5), were performed and initialized with ECMWF operational analysis every day at 0000 UTC during the Year of Tropical Convection (YOTC). An Atmospheric Model Intercomparison Project (AMIP) type of ensemble climate simulations was also conducted for the same period. The analyses indicate that initial drifts in precipitation and associated moisture processes (“fast processes”) can be identified in the hindcasts, and the biases share great resemblance to those in the climate runs. Comparing to Tropical Rainfall Measuring Mission (TRMM) observations, model hindcasts produce too high a probability of low- to intermediate-intensity precipitation at daily time scales during northern summers, which is consistent with too frequently triggered convection by its deep convection scheme. For intense precipitation events (>25 mm day−1), however, the model produces a much lower probability partially because the model requires a much higher column relative humidity than observations to produce similar precipitation intensity as indicated by the proposed diagnostics. Regional analysis on precipitation bias in the hindcasts is also performed for two selected locations where most contemporary climate models show the same sign of bias. Based on moist static energy diagnostics, the results suggest that the biases in the moisture and temperature fields near the surface and in the lower and middle troposphere are primarily responsible for precipitation biases. These analyses demonstrate the usefulness of these metrics and diagnostics to diagnose climate model biases.

Corresponding author address: Hsi-Yen Ma, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Mail Code L-103, 7000 East Avenue, Livermore, CA 94551-0808. E-mail: ma21@llnl.gov
Save
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354.

    • Search Google Scholar
    • Export Citation
  • Boo, K.-O., G. Martin, A. Sellar, C. Senior, and Y.-H. Byun, 2011: Evaluating the East Asian monsoon simulation in climate models. J. Geophys. Res., 116, D01109, doi:10.1029/2010JD014737.

    • Search Google Scholar
    • Export Citation
  • Boyle, J., and S. A. Klein, 2010: Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J. Geophys. Res., 115, D23113, doi:10.1029/2010JD014262.

    • Search Google Scholar
    • Export Citation
  • Boyle, J., and Coauthors, 2005: Diagnosis of Community Atmospheric Model 2 (CAM2) in numerical weather forecast configuration at Atmospheric Radiation Measurement sites. J. Geophys. Res., 110, D15S15, doi:10.1029/2004JD005042.

    • Search Google Scholar
    • Export Citation
  • Boyle, J., S. A. Klein, G. Zhang, S. Xie, and X. Wei, 2008: Climate model forecast experiment for TOGA COARE. Mon. Wea. Rev., 136, 808832.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630.

  • Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian Oscillation forecasts: A CLIVAR MJO working group project. Bull. Amer. Meteor. Soc., 91, 12471258.

    • Search Google Scholar
    • Export Citation
  • Hannay, C., D. L. Williamson, J. J. Hack, J. T. Kiehl, S. A. Klein, C. S. Bretherton, and M. Kohler, 2009: Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models. J. Climate, 22, 28712889.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2010: Temporal relations of column water vapor and tropical precipitation. J. Atmos. Sci., 67, 10911105.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., G. A. Meehl, D. Bader, T. L. Delworth, B. Kirtman, and B. Wielicki, 2010: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc., 91, 18191832.

    • Search Google Scholar
    • Export Citation
  • Iacono, M., E. Mlawer, S. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105, 14 87314 890.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436.

  • Kim, D., A. H. Sobel, E. D. Maloney, D. M. W. Frierson, and I.-S. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 55065520.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, doi:10.1029/2006GL027567.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Coauthors, 2003: Improved skill for the anomaly correlation of geopotential heights at 500 hPa. Mon. Wea. Rev., 131, 10821102.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525.

  • Lin, J.-L., B. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Coauthors, 2012: TWP-ICE global atmospheric model intercomparison: Convection responsiveness and resolution impact. J. Geophys. Res., 117, D09111, doi:10.1029/2011JD017018.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. D. Neelin, 2010: Tropical South America/Atlantic sector convective margins and their relationship to low-level inflow. J. Climate, 23, 26712685.

    • Search Google Scholar
    • Export Citation
  • Luo, H., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 130141.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., R. Milliff, and J. Morzel, 2009: Composite life cycle of maritime tropical mesoscale convective systems in scatterometer and microwave satellite observations. J. Atmos. Sci., 66, 199208.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., S. F. Milton, C. A. Senior, M. E. Brooks, S. Ineson, T. Reichler, and J. Kim, 2010: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Climate, 23, 59335957.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morita, J., Y. N. Takayabu, S. Shige, and Y. Kodama, 2006: Analysis of rainfall characteristics of the Madden–Julian oscillation using TRMM satellite data. Dyn. Atmos. Oceans, 42, 107126.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, in press.

  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384.

  • Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell, 2008: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459470.

    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469.

    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and Coauthors, 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85, 19031915.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., C. P. Batstone, R. J. P. Hofmann, K. E. Taylor, and P. J. Gleckler, 2008: Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J. Geophys. Res., 113, D14209, doi:10.1029/2007JD009334.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and T. N. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, 129146, doi:10.1002/qj.23.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 17391756.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J.-K. E. Schemm, C. Jones, and S. Moorthi, 2005: Forecast skill of the tropical intraseasonal oscillation in the NCEP GFS dynamical extended range forecasts. Climate Dyn., 25, 265284, doi:10.1007/s00382-005-0035-2.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova, 2010: Tropospheric water vapor, convection, and climate. Rev. Geophys., 48, RG2001, doi:10.1029/2009RG000301.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and D. Kim, 2012: Simplified metrics for the identification of the Madden–Julian oscillation in models. Atmos. Sci. Lett., 13, 187193.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790.

  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19, 916934.

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192.

  • Taylor, K. E., R. J. Stouffer, G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc.,93, 485–498.

  • Waliser, D. E., and Coauthors, 2012: The “Year” of Tropical Convection (May 2008–April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 1189–1218.

    • Search Google Scholar
    • Export Citation
  • Wang, B., H.-J. Kim, K. Kikuchi, and A. Kitoh, 2011: Diagnostic metrics for evaluation of annual and diurnal cycles. Climate Dyn., 37, 941955, doi:10.1007/s00382-010-0988-0.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. E. Brooks, 2008: Initial tendencies of cloud regimes in the Met Office Unified Model. J. Climate, 21, 833840.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2013: The Transpose-AMIP II experiments and its application to the understanding of Southern Ocean cloud biases in climate models. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., and J. G. Olson, 2007: A comparison of forecast errors in CAM2 and CAM3 at the ARM Southern Great Plains site. J. Climate, 20, 4572–4585.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., and Coauthors, 2005: Moisture and temperature balances at the Atmospheric Radiation Measurement Southern Great Plains Site in forecasts with the Community Atmosphere Model (CAM2). J. Geophys. Res., 110, D15S16, doi:10.1029/2004JD005109.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and M. Zhang, 2000: Impact of the convective triggering function on single-column model simulations. J. Geophys. Res., 105, 14 98314 996.

    • Search Google Scholar
    • Export Citation
  • Xie, S., M. Zhang, J. S. Boyle, R. T. Cederwall, G. L. Potter, and W. Lin, 2004: Impact of a revised convective triggering mechanism on Community Atmosphere Model, Version 2, simulations: Results from short-range weather forecasts. J. Geophys. Res., 109, D14102, doi:10.1029/2004JD004692.

    • Search Google Scholar
    • Export Citation
  • Xie, S., J. Boyle, S. A. Klein, X. Liu, and S. Ghan, 2008: Simulations of Arctic mixed- phase clouds in forecasts with CAM3 and AM2 for M-PACE. J. Geophys. Res., 113, D04211, doi:10.1029/2007JD009225.

    • Search Google Scholar
    • Export Citation
  • Xie, S., H.-Y. Ma, J. S. Boyle, S. A. Klein, and Y. Zhang, 2012: On the correspondence between short- and long-time-scale systematic errors in CAM4/CAM5 for the Year of Tropical Convection. J. Climate,25, 7937–7955.

  • Yanai, M., and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. J. Climate, 11, 463482.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627.

    • Search Google Scholar
    • Export Citation
  • Yang, F., 2011: Review of NCEP GFS forecast skills and major upgrades. Preprints, 24th Conf. on Weather and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 2B.1. [Available online at https://ams.confex.com/ams/91Annual/flvgateway.cgi/id/17618?recordingid=17618.]

  • Yokoi, S., and Coauthors, 2011: Application of cluster analysis to climate model performance metrics. J. Appl. Meteor. Climatol., 50, 16661675.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center general circulation model. Atmos.–Ocean, 33, 407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 626 138 8
PDF Downloads 471 113 1